EBIS/T charge breeders: news and future trends

Fredrik Wenander

EBIS/T charge breeders: news and future trends

First ideas/suggestions for post-acceleration of radioactive ion beams: "Nuclides far off the Stability Line" (1966) Sweden

"...rich field of information that would be opened by a possible future use of unstable targets and projectiles in nuclear reaction studies."

Courtesy of M. Huyse

Background

1. Post acceleration

Energy (few MeV/u) $\propto \frac{q in}{q^2 ir}$

q in linac q² in cyclotron

Short & compact accelerator

Typically 3 < A/q < 9

Fredrik Wenander

2. Trap mass measurement

m/ Δ m \propto (q·B/m) · T_{rf} · \sqrt{N}

Emphasize * Few ions * High charge state * Fast breeding

- * Produces highly charged ions
- * e⁻ beam compressed by solenoid B-field
- * lons are trapped in a magneto-electrostatic trap
- * Ionisation by e⁻ bombardment from a fast, dense mono-energetic e⁻ beam

Electron Beam Ion Source / Trap

EBIS/T parameters

-> High j_e requires small electron beam radius or high current

ЧO

Electron

energy

j_e = $\frac{I_e}{\pi r_{ebeam}^2}$

$$N^{-} = 1.05 \cdot 10^{13} \frac{kL_{trap}I_{e}}{\sqrt{U_{e}}} = 0$$
Example 1.05 · 10¹³ $\frac{kL_{trap}I_{e}}{\sqrt{U_{e}}} = 0$
Example 1.05 · 10¹³ $\frac{kL_{trap}I_{e}}{\sqrt{U_{e}}} = 0$

nple ¹³²Sn³⁴⁺ using REXEBIS parameters: 0.25 A, U_e = 5 keV, L = 0.8 m, k = 50% => ~1.5·10¹⁰ charges .5·10¹⁰/34 X 0.2 ~ **10⁸ ions in one charge state per pulse** ~20% in desired charge state

 E_e should be ~3 x highest requested ionization potential for A/q=4 beams ~ 5 to 10 keV is sufficient for Li-like uranium 150 keV is required

Genealogy

Genealogy

REX-ISOLDE low-energy layout

Mass separator

⁻. Wenander 2010 *JINST* 5 C10004

achromatic Nier-spectrometer ~150 A/Q resolution

EBIS drift tubes at 293 K ~ 200 mA electron beam ~ 100 A/cm² current density 3-6 keV electron beam energy max capacity 3.10¹⁰ charges ~10⁻¹¹ mbar in trapping region

* A/q < 4.5 (given by linac)

- * beam intensity a few to 10⁹ particles/s
- * pulsed machine
- * repetition rate 50 to ~2 Hz

Penning trap CW injection, bunched extraction 3 T solenoid field buffer gas filled (5 10⁻⁴ mbar) cooling time ~20 ms

Physics program @ REX

REX-ISOLDE started in 2001

33 elements and 108 different isotopes already used at REX

lon injection, extraction and beam contamination

=> α larger for immersed e-gun than for high compression

Need for Penning trap or RFQ cooler !

* Bunched or cw cooler?

* Bunched ion capacity $\sim \frac{N^-(EBIS)}{Q_{charge bred ion}}$ (in the order of 10⁸ to 10¹⁰ ions)

lon injection

 \neg

'Pulsed injection' injection confinement $U(z) \uparrow efficiency = \left(\frac{\alpha}{\epsilon}\right)^2$

ź

Two requirements:

electron and ion beams overlapping ionisation from 1+ to 2+

ź

for $t_{injection_pulse} < t_{round-time}$ and $\alpha/\epsilon \le 1$

- * CW injection not so efficient yet
- * Both ReA EBIT and CARIBU will introduce a bunching RFQ after the gas catcher

Inherently a pulsed machine

- 1. CW ion injection possible
- 2. pulsed extraction necessary

Ion extraction times

At REX 24 h beam time => 15 min delivered beam

- + excellent signal-to-noise ratio
- + suited for normal conducting (pulsed) linac
- + adjust EBIS HV between injection and extraction
- high instantaneous rates (DAQ dead-time, pile-up)

Courtesy of T. Baumann NSCL-MSU

'Slow ramp scheme'

- * Trap barrier is lowered slowly
- * Barrier power supply controlled by an Arbitrary Function Generator
- * Can calculate optimum U_{barrier}(t) from particle energy distribution

F. Ullman et al., "SHAPING OF ION PULSES FROM AN ELECTRON BEAM ION SOURCE...", Proceedings of IPAC2011, San Sebastián, Spain

Slow ion extraction

Alt 1. Two EBIS in push-pull mode (one charge breeds while the other extracts)

CW ion extraction

Fredrik Wenande

NB! Long t_{extraction} only useful with:

* buncher in front of breeder (can't accept ions during extraction) * cw linac (limited RF pulse length for room temperature linac)

Beam contamination

* Stable A/q contamination from ISOLtarget and breeder

Highly advanced vacuum system

Trapping region at:

 room temperature (REXEBIS, CARIBU, RHICEBIS)
 cryogenic temperature (TITAN, ReA EBIT)

Consider:

- 1. pumping speed
- 2. memory effects
- 3. electron beam loss effects

Beam contamination

* Stable A/q contamination from ISOLtarget and breeder

Courtesy of S. Kondrashev

NB! Need high-resolution ionisation chambers for particle identification

REXEBIS cleanest beam so far, but also a modest electron beam

New EBIS/T breeders

RHICEBIS at BNL

Stable ion injector using external injection

Ions	He - U
Q / m	≥1/6
Current	$>$ 1.5 emA (10 $\mu S)$
Pulse length	10-40 µs
Rep rate	5 Hz
Output energy	2 MeV / u
Time to switch species	1 second
•	

Key elements: 10 A IrCe electron gun >100 kW collector

Courtesy of BNL Advanced ion source group

 CARIBU beams are mass separated, injected into the RFQ cooler-buncher, additionally mass separated in the MR-TOF and transported into the EBIS

Overall transmission and setup complexity?

Courtesy of S. Kondrasev and CARIBU team

* Scaled down version of RHICEBIS

immersed egun 2 A, 750 A/cm², 5 keV 2·10¹¹ charges A/q < 7 30 Hz repetition rate Goal 15% in Cs¹⁹⁺

CARIBU EBIS results

* State-of-the art design

Complete assembly of ion trap was done inside class 100 clean room

* Results Off-line commission finished 1.7 A reached (low duty cycle) >10% in one Cs charge state

* Move setup on-line 2015

Single charge state efficiency for ³⁹K¹⁺ injection

The future

high repetition rate large throughput

Penning trap + EBIS = TSR prerequisite

Fast ion extraction from REXEBIS

Collect ions in REXTRAP

REXEBIS will work for many of the TSR experiments but one benefits from higher:

- * ion charge q
- * current density j_e
- * electron beam energy E_e

High Energy Current Compression gun - HEC²

iron shield

Ba dispenser cathode

anode

High compression Brillouin-type gun with passively shielded cathode

- Prototype gun design by BNL, built by CERN
- First version of HEC² gun installed at TestEBIS setup at BNL
- Full-scale test device

- Record current for a high-compression beam: 20 ms long beam pulses of 1.7 A
- Limited by loss current
- Improved gun design in fabrication

Technological challenges

Electron gun

- * Cathode lifetime
- * Current density
- * Two major gun design players

Courtesy of S. Kondrashev

Superconducting magnets

- * LHe consumption (REX)
- * Winding coils broken (NSCL-MSU)
- * He gas from cryostat to vacuum

Different schools

- * cryocooler
- * manual LHe filling

Future

North America now the frontrunner...

...proposal to the EURISOL study within ENSAR2

Innovative Charge Breeding Techniques (ICBT) CERN, GANIL and HIL

Strive to:

* perform very fast charge breeding, production of fully stripped ions and CW beams using Electron Beam Ion Breeders

* and to improve the efficiency of ECR ion source breeders

TwinEBIS test-bench

Streamlined replica of REXEBIS

Phase 1

Test bench for cathodes and poisoning effect IrCe cathode from V. Osynniakov LaB₆ cathode from

Electron beam modifications

understand loss current limitation at REXEBIS

<image>

Ion extraction modulation

Phase 2 (pending resources)

External ion injection

Provide highly charged ions for CW trap tests

Charge breeders for RIBs worldwide

Conclusions

* Several EBIS/T charge breeders going on-line

* Decisions to take:

room temperature or cryogenic trapping region CW or pulsed injection (pulsed in the lead) immersed or highly compressed electron beam

* Don't underestimate the complexity of the systems

* New challenges:

high intensity? 'CW' beam extraction high charge states

