

ADVANCES IN NEUTRON CONVERTERS FOR RIB FACILITIES

Luigi B. Tecchio INFN-Laboratori Nazionali di Legnaro Italy

Advances in RIB Production Facilities

EURISOL Town Meeting - Orsay

Facilities for up to a few 10 kW

```
»
```

ISOLDE, IGISOL, LISOL, HRIBF, HIE-ISOLDE, EXCIT, ALTO, SARAF ISAC, SPIRAL-1, SPES, iTHEMBA Labs, BRIF (Bejing) » CARIBU (fission source)

Developments and plans for systems for >100 kW beam power

»

SPIRAL2 (200kW), KoRIA (200 kW), ARIEL, MYRRHA, EURISOL (4MW)

»

CARIF (reactor-based)

SARAF

BRIF

Neutron Converters

EURISOLSPIRAL2KoRIAiTHEMBA Labs

Gamma Converters

ALTO ARIEL

Increase the production of neutron-rich isotopes

Dissipate the heat associated with the high-power primary beam

The History

Niels Bohr Institute O.Kofoed-Hansen K.O. Nielsen Dan. Mat.Fys.Medd. 26, no. 7 (1951)

Kofoed-Hansen and Nielsen invented the isotope separator on-line (ISOL) concept to address fundamental lepton interactions namely the beta neutrino angular correlation. Two stage target technique in which the deuteron driver beam produced neutrons in a primary converter target to be used in a secondary target to produce gaseous fission products that in turn were ionized and accelerated.

The History

The power of the charged driver beam can be dissipated in a primary target and the produced neutrons used to generate beams of fission products in an ISOL target and ionsource unit with known technology without overheating it.

J. Nolen; Proc. 3° Int. Conf. RNB (1993), USA

R. Catherall et al.;Nuclear Instruments and Methods in Physics Research B 204 (2003) 235–239

L.B. Tecchio et al.;Eur. Phys. J. A 19, 341–345 (2004)

SARAF at Soreq

SARAF

SARAF Accelerator Complex

SARAF LIFTIT

LiFTiT fast neutron spectra from MCUNED [J.Sanz, 2011] Fast neutron measurement from the LiFTiT target for a 5 MeV d beam, using a NE-213 liquid scintillator. The results are preliminary and still require a response function de-convolution to get a proper spectrum.

 The basis for most of the R&D at SARAF Liquid target enables utilization of the SARAF high power beam Jet chamber At SARAF Phase I: $^{7}Li(p,n)^{7}Be E_{th}=1.88 MeV$ Proton energy: ~2 MeV Proton current: <3.5 mA T ≈ 230°C T_{max} ≈ 350°C liquid Jet: 18 mm x 1.5 mm lithium Lithium velocity: 20 m/s Wall assisted lithium jet D. Kijel, A. Arnshtam et al. 2008 At SARAF Phase II: An upgrade of LiLiT will be used with a deuteron beam to produce faster neutrons and higher flux 80 kW

SARAF LiLiT (Liquid Lithium Target)

LiLiT Phase I as built and assembled at Soreq

Lithium flow on the LiLiT concave nozzle. Picture taken from target chamber view port while during lithium circulation A٠

SPIRAL2 Project: 40 MeV deuterons 5 mA 200 kW (1,25 mA, 50 kW) 2,4 kg Ucx target Main Goal: 10¹⁴ Fission/s induced by neutron **Neutron Converter:** $10^{12} \text{ n/cm}^2 \text{ s}$ Rotating wheel (400-600 turns/min) with graphite as converter material Working temperature up to 1850 °C Radiation cooling 50 kW Prototype planned for the first period of operation Neutron converter has been conceived to operate as "nuclear device"

Overview of the Building – Phase 2

The Production Module

SPIRAL2 – R&D on Graphite Converter

SPIRAL2 – R&D on Graphite Converter

30

power, kW

35

45

The Neutron Converter Module

Fully remote controlled by telemanipulators

NCM diameter = 1390mm

Total weight = 850 kg

For both 50 kW and 200 kW converters

The 50 kW Graphite Wheel

Graphite as converter material:

200 kW converter :

 $\phi = 520$ mm ; 12 sectors thickness = 8mm $\phi = 1200$ mm

Stopping length 40 MeV deuteron = 5,6mm

October 30-31, 2014

EURISOL Town Meeting - Orsay

The 50 kW Rotation System

Designed to be remote controlled by telemanipulators

October 30-31, 2014

EURISOL Town Meeting - Orsay

Tool for Remote Maintenance

Tool for Remote Maintenance

Positioning with a precision of 1/10 mm

- NCM delivered at LNL
- Mechanical test have been performed
- Prototype of maintenance tool is in operation at LNL
- Acceptance tests planned for November 2014
- Delivering at GANIL at December 2014

iThemba LABS (South Africa)

IBA 70-MeV H⁻ cyclotron.

Converter R&D in progress

Most ambitiuos project of a RIB facility 1 GeV proton beam, 4 mA current (4 MW) Liquid Hg as converter (inspired by SNS at ORNL) $>10^{15} n_{th}/cm^2/s$ 2,4 x 10¹⁵ ions/s Production rate by thermal neutrons inducing fission on ²³⁵U thick target

EURISOL n-Converters

EURISOL n-Converter Prototype (CGS)

Coaxial Guide Stream (CGS) costructed at PSI and tested at IPUL

October 30-31, 2014

Prototype of the Windowless Tranverse Film (WTF)

EURISOL n-Converter Prototype (WTF)

OCLOBEL DO DE, 2017

LONIDOL IOWIT MICCUILS OIDAY

EURISOL n-Converter (CGS)

Parameter	Symbol	Units	Nval	Range
Converter Target material	Zconv	-	Hg (liquid)	LBE
Secondary Target material	Ztarg		UC _x , BeO	A LOCATION AND A REAL OF
Beam particles	Zbeam	-	Proton	
Beam particle energy	Ebeam	GeV	1	≤ 2
Beam current	Ibeam	mA	4	2-5
Beam time structure	31		dc	ac 50Hz 1ms pulse
Gaussian beam geometry	obeam	mm	15	\leq 25, parabolic
Beam power	Pbeam	MW	4	≤ 5
Converter length	l _{conv}	cm	45	≤ 85
Converter radius (cylinder)	fconv	cm	15	8 - 20
Hg temperature	T _{conv}	°C	150 (tbc)	<< 357
Hg flow rate	Qconv	ton/s	1 (tbc)	<< 3
Hg speed	Vconv	m/s	5 (tbc)	<< 15
Hg pressure drop	ΔP_1	bar	tbc	<< 100
Hg overpressure	ΔP_2	bar	tbc	<< 100
UC _x temperature	T _{targ}	°C	2000	500-2500

Main parameters for the Multi-MW converter and fission target system

Set up of the Hg converter

October 30-31, 2014

EURISOL Town Meeting - Orsay

IFMIF – International Fusion Materials Irradiation Facility

\mathcal{R}_{LNL} IFMIF – International Fusion Materials Irradiation Facility

Main objectives: demonstrate a stable lithium flow at nominal conditions
Remove all impurities, develop adequate diagnostics (flow measurement)
Speed: 15 m/s
Thickness: 25 ±1 mm
Width: 100 mm (260 mm for IFMIF)

MEGAPIE at SINQ – Paul Scherrer Institut

An experiment to be carried out in the SINQ target location to demonstrate the safe operation of a liquid metal spallation target of about 1 MW beam power.

Demonstration of feasibility for future ADS development Increase neutron flux for SINQ

October 30-31, 2014

MEGAPIE at SINQ –Paul Scherrer Institut

Beam energy:	575 MeV	Deposited heat:	650 kW
Beam current:	1.74 mA (design)	Cold temperature:	230 – 240°
Length:	5.35 m	Hot temperature:	380°C
LBE volume:	~ 82	Design temperature:	400°C
Weight:	~ 1.5 t	Operating pressure:	0 – 3.2 bar
Wetted surface:	~ 8m²	Design pressure:	16 bar
Gas expansion volume:	~ 2 I	Total LBE flow rate:	4 l/s
Insulation Gas:	0.5 bar He	By-pass flow rate:	0.25 l/s

Lead-Bismuth eutectic (Pb 44.5%- Bi 55.5%) Attractive neutronic and physical properties:

Heat transfer coefficient

Low melting poit (125°C)

SNS – Spallation neutron Source - ORNL

SNS – Spallation neutron Source - ORNL

ESS – European Spallation Source

The ESS accelerator high level requirements are to provide a 2.86 ms long proton pulse at 2 GeV at repetition rate of 14 Hz. This represents 5 MW of average beam power with a 4% duty cycle on target.

ESS – European Spallation Source

A rotating tungsten wheel is the baseline option for the target, which distributes the irradiation over a large volume of target material. Metallic liquid leadbismuth eutectic is being retained as an comparative target for licensing purposes.

A few RIB facilities uses (or plan to use) neutron converters of different materials to produce radioactive ion beams (beam power up to few 10kW)

Saraf LiFTiT 10kW LiLiT(up to 80kW; plans)

iThemba rotating BeO (28kW; plans)

SPIRAL2 will be the first RIB facility operating a High Power Neutron Converter (200kW)

This is expected in 4/5 years from now!?

SPIRAL2 represent a valid technological test bench for EURISOL (scale 1:10)

Neutron Spallation Sources as precursors of high power neutron converters in the MW range in synergy with EURISOL.