Super Separator Spectrometer

The project & the physics opportunities

Hervé Savajols

on behalf of the S^3 collaboration

S^3 Collaboration (Loi signed by 28 laboratoires)
ANL (US), CENBG, CSNSM, JINR-FLNR, (Russia), GANIL, France, GSI (Germany), INFN Legnaro, (Italy), IPHC, France, IPNL, Irfu CEA Saclay, IPNO, France, JYFL (Finland), K.U. Leuven (Belgium), Liverpool-U, (UK), LNS (Italy), LPSC, MSU (US), LMU, (Germany), Nanjing-U (China), Northern Illinois University (US), SAS Bratislava, (Slovakia), IFJ PAN Cracow (Poland), Smoluchowski Institute (Poland), CEA-DAM; SUBATECH, TAMU (US), U. Mainz (Germany), York-U (UK), Vinca Institute (Serbia)

http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3
Overview

✓ Status of SPIRAL2 phase 1

✓ Separator Spectrometer

✓ Experimental techniques

✓ Physics opportunities

 Spiral2 Ph1 physics WS – March 2014 – 165 participants

✓ Outlook and conclusions
SPIRAL2 under construction

Phase 1: High intensity stable beams + Experimental rooms (NFS + S\(^3\) + DESIR) (2015)
Phase 2: High-intensity low-energy & post-accelerated Radioactive Ion Beam facility

SPIRAL2 is on the list of the European Strategy Forum on Research Infrastructures (ESFRI)
Phase 1 (2015-)
Increase the intensity of stable beams
High intense neutron source
\((HI \leq 10^{15} \text{ pps, p-Ni}) \)

Phase 1++ (2020-)
High Intensity
\((HI \leq 10^{15} \text{ pps, p-U}) \)

Phase 2
Expand the range and the intensity of exotic nuclei

Desir Phase 1+ (2019-)
Low energy facility

Agata (2015-2018)

Linag
33 MeV p, 40 MeV d (5mA)
A/q=3 - 14.5 A.MeV HI (1mA)

Spiral 1 upgrade
Production up to \(10^{14} \text{ FF/s} \)
CME: 1-20 AMeV (9 AMeV pour FF)

Spiral 1 Upgrade (2016-)
New light RIBs from beam/target fragmentation

A National & EU priority
High Intensity Project (SPIRAL2 Phase 1++)

- Reference project $\leq 10^{15}$ pps, p-Ni, 0.75 MeV/n – 14.5 MeV/n
- Phase 1++ $\leq 10^{15}$ pps, p-U, 0.75 MeV/n – 10 MeV/n

- Strengthen the phase 1+ scientific program
- Open new perspectives (Pb,U heavy beams)

<table>
<thead>
<tr>
<th>Ions</th>
<th>Intensity (µA) [A/Q=3]</th>
<th>High Intensity [A/Q=6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{18}O</td>
<td>216</td>
<td>375</td>
</tr>
<tr>
<td>^{19}F</td>
<td>28.6</td>
<td>50</td>
</tr>
<tr>
<td>^{36}Ar</td>
<td>17.5</td>
<td>40</td>
</tr>
<tr>
<td>^{40}Ar</td>
<td>2.9</td>
<td>30</td>
</tr>
<tr>
<td>^{36}S</td>
<td>4.6</td>
<td>30</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>1.25</td>
<td>15</td>
</tr>
<tr>
<td>^{58}Ni</td>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>^{84}Kr</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>^{124}Sn</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>^{139}Xe</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>^{238}U</td>
<td>0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Neutron-rich VHE-SHE

New perspectives with the phase1++ high intensity heavy beams (Xe, Pb, U)

I=1μA \rightarrow 15evt/s@σ~1μb
Take into account fission / 1000
\rightarrow 50 evt/hour

SPIRAL2 Phase 1++ civil construction is finished

September 2014
Installation

LINAC beams in 2015
“First generation of ECOS facility”
Physics goals

Study of rare events in nuclear and atomic physics

\[^{58}\text{Ni} + ^{46}\text{Ti} \rightarrow ^{100}\text{Sn} + 4n \]
(l=10\,\mu\text{A}) \Rightarrow 3\text{evt/s @ } \sigma_{\text{th}} = 5\text{nb}

Proton Dripline & N=Z nuclei
Shell correction effects
Study the role of \(\pi-\nu \) correlations
Deformation – shape coexistence
Exotic decay
Astrophysics rp-process
Fundamental interaction

High Resolution and High Transmission versatile separator-spectrometer

Nuclei produced by Fusion-Evaporation

Nuclei produced by nucleon transfer reaction

Neutron-rich Nuclei
Evolution of shell closure
(Tensor, 3-body forces …)

\[^{48}\text{Ca} + ^{238}\text{U} \rightarrow ^{283}\text{112} + 3,4n \]
(\(I = 10\,\mu\text{A} \)) \Rightarrow 30\text{evt/week/pb}

Limit of the nuclear existence
Reaction mechanism
Shell correction effects
Atomic properties

Ion-Ion interactions

Atomic physics
FISIC project

\(\Rightarrow \) test nuclear and atomic models and guide new theoretical development
Technical challenges

- **High Beam intensity** (10µA = 6.10^{13} p/s or more)
 - High power loss density in target and beam dump
 - Rejection of the beam: >10^{13}

- **Reactions at Low Energy** (fusion-evaporation residues)
 - Large solid angle: +/- 80 mrad X and +/- 80 mrad Y
 - Charge state acceptance of +/- 10% (q=20^+)
 - Momentum acceptance for each charge state Bρ: +/- 10%

- **Many reaction channels** (evaporation channels)
 - M/q selection: 1/350 (FWHM) resolution
 - Identification in Z when possible

- **Versatility** (transfer reactions & ion-ion collisions)
 - High range in energy [Bρ_{max} = 1.8Tm]
 - Secondary reactions
Optics

Image 1
Highly selective beam rejection

Image 2
Achromat selection
Extended drift to place detector arrays

Image 3
TKE selection

Image 4
Mass selection

- Multistep separation
- Large acceptance
- Mass resolution ($\Delta M/M=460$)

Tracewin simulation code:
Full raytracing in the multipole 3D field maps
Automatic optimisation of 80 fields

Momentum Achromat
Mass spectrometer

Horizontal
Vertical

$\Delta (M/Q) \approx 460$

$A=101, 100, 99$
Operational modes & performances

- **High Resolution mode**
 - Designed for maximum selection
 - Weighted mass resolution: $\Delta M/M = 460$
 - Folded transmission: 50% for $^{58}\text{Ni} + ^{46}\text{Ti} \rightarrow ^{100}\text{Sn}^{24+} + 4n$

- **High Transmission mode**
 - Designed for very asymmetric reactions
 - Weighted mass resolution: $\Delta M/M = 260$
 - Folded transmission: 15-20% for $^{22}\text{Ne} + ^{238}\text{U} \rightarrow ^{255}\text{No} + 5n$

- **Converging mode**
 - Designed for gas cell – Laser spectroscopy
 - Folded transmission: 68% for $^{58}\text{Ni} + ^{40}\text{Ca} \rightarrow ^{94}\text{Ag} + p3n$

1) High resolution
2) High transmission
3) Converging

$\varphi=5cm$
Technical highlight

Beam spot:
$\sigma_x=0.5\text{mm}, \sigma_y[0.5-2.5\text{mm}]$
Energy precision $\approx 5 \times 10^{-3}$

3 x M-dipoles
Large H & V gaps

Dispersive zone
(beam dump & Movable fingers)

tested for 5kW/cm^2

Target system
High power rotating targets (3000-5000 rpm)
Stable & Actinide systems

3 x M-dipoles
Large H & V gaps

E-Dipole
20 cm gap & +/- 350 kV
$E_{\text{max}}: 12-14 \text{ MeV}$
Open slit in the anode

SC Multipoles
Q+S+O fields

All hardware components are under final construction
Installation completed by September 2016
Experimental Techniques

In-beam spectroscopy
Two step reactions
EXOGAM2
PARIS
AGATA
MUST2/GASPARD

S3 Physics case (16 Lols)
- VHE – SHE elements
- Proton drip-line and N=Z
- Nuclear astrophysics
- Atomic physics

Delayed spectroscopy

SIRIUS setup
Implantation-decay station at the mass dispersive plan

Atomic physics

FISIC setup
Fast Ion Slow Ion Collisions
Electron exchange

Ground state properties
(mass, size, moments, spins)

REGLIS³ setup
Low Energy Branch

DESIR
SIRIUS (Spectroscopy & Identification of Rare Ions Using S3)

- Recoil-decay tagging
- Short decay times
- High Resolution, High efficiency
- Mass separation

Germanium detector
- e.g., Exogam2, CLODETTE

Time of flight + tracking detector
- Large size (200x150 mm2)
- Time Resolution < 1ns
- Position resolution = 1mm
- Very low thickness

Tunnel detector for escaped e$^-$ and α
- Conversion electrons FWHM <5 keV
- Escaped alpha FWHM 15 keV

Implantation detector
- (HI, α and e$^-$ decay)
- Large detector size 10x10 cm2
- High resolution FWHM
- **Ability to detect large > 50 MeV pulse**
 Followed (\approx 10μs) by a weak (<15 MeV) pulse.
- No Dead time

(GANIL, IPHC, CSNSM, CEA/IRFU/SPhN)
Day 1 experiments: N=Z

100Sn region experimental status

- 112Ba-108Xe-104Te super-allowed α decay and search for cluster radioactivity
- Exotic decays from the 21+ isomer in 94Ag

Excited states
Fusion-evaporation
Decay properties
Fusion-evaporation
Existence
Fragmentation
α decay
proton decay
β-delayed protons with sizeable branch
Observed/expected
Day1 experiments: VHE - SHE

- **Nuclear structure**
 Quasi-particle excitations ➔ deformation/K-isomers

- **Reaction studies**
 Isospin dependent investigation

- **SHE Synthesis**
 I=10µA ➔ 1evt/month@σ~10fb

<table>
<thead>
<tr>
<th>nuclide</th>
<th>feature</th>
<th>X-section [nb]</th>
<th>rate [h⁻¹]</th>
<th>21UT integral day 1</th>
<th>21UT integral 15-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>254No</td>
<td>ER</td>
<td>2000</td>
<td>60.000</td>
<td>6×10^7</td>
<td>1×10^7</td>
</tr>
<tr>
<td>256Rf</td>
<td>ER</td>
<td>17</td>
<td>550</td>
<td>90.000</td>
<td>5.4×10^5</td>
</tr>
<tr>
<td>266Hs</td>
<td>ER</td>
<td>15 (270Ds)</td>
<td>0.34</td>
<td>57</td>
<td>285</td>
</tr>
<tr>
<td>266mHs</td>
<td>K-isomer</td>
<td>15 (270Ds)</td>
<td>0.01</td>
<td>2.5</td>
<td>12.5</td>
</tr>
<tr>
<td>270Ds</td>
<td>ER</td>
<td>15</td>
<td>0.45</td>
<td>76</td>
<td>380</td>
</tr>
<tr>
<td>270mDs</td>
<td>K-isomer</td>
<td>15 (270Ds)</td>
<td>0.22</td>
<td>38</td>
<td>190</td>
</tr>
<tr>
<td>262Sg</td>
<td>α-decay</td>
<td>15 (270Ds)</td>
<td>0.02</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>276Cn</td>
<td>ER</td>
<td>0.5 (277Cn)</td>
<td>0.01</td>
<td>2.5</td>
<td>12.5</td>
</tr>
<tr>
<td>288115</td>
<td>ER</td>
<td>10</td>
<td>0.3</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>288115</td>
<td>L X-rays</td>
<td>10</td>
<td>1.8</td>
<td>300</td>
<td>1800</td>
</tr>
</tbody>
</table>

Rate summary vs GSI UNILAC
× 2-4 [A/Q=3]
× 15-20 [A/Q=6]
Synthesis of 257Db @ GANIL

Measure new electromagnetic transitions in 257Db, 253Lr and 249Md

209Bi(50Ti,2n)257Db $\sigma=2.4$ nb

First experiment using 50Ti GANIL - up to 0.5 μA on target
Separation by LISE velocity filter Rejection : 3.10^{10}
Transmission : 15% (Gain factor 15-20 with S3)

Set the course for the S3 VHE-SHE researchs

E656 experiment : J. Piot & M. Vostinar (GANIL)
Low energy branch

(Some experiments require higher purity, low energy ions in vacuum, …)

REGLIS³: In-gas cell laser ionization and spectroscopy

- Pre-selection by S³ in-flight separator
- Products thermalized and neutralized in a buffer gas
- Re-ionization of stopped reaction products
- Selective ionization for decay spectroscopy, mass measurements, DESIR
- High resolution laser spectroscopy in gas jet
Laser systems for in gas ionization: Dye laser (HELIOS) and Ti:Sa laser (GISELE2)

MAJOR ATTRIBUTES OF THE DEVICE

- **Efficient**: produced in very small quantities (→ ~ 1 pps)
- **Selective (isotopic & isobaric selections)**: suppression of unwanted isotopes (1/10 000 lower limit demonstrated)
- **Relatively fast**: short life time (up to ~ 100 ms)
- **Sufficient spectral resolution** (→ few hundred MHz): determine the isotope/isomer shift and hyperfine structure, spin, moments...

=> 2 in 1: Laser spectroscopy + Laser Ion Source (pure (isomeric) beams)

Expected performances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission through S^3</td>
<td>40-50 %</td>
</tr>
<tr>
<td>Thermalization, diffusion and transport through the exit hole</td>
<td>50-90 %</td>
</tr>
<tr>
<td>Neutralization</td>
<td>50-100 %</td>
</tr>
<tr>
<td>Laser ionization</td>
<td>50-60 %</td>
</tr>
<tr>
<td>Transport efficiency</td>
<td>80-90 %</td>
</tr>
<tr>
<td>Total efficiency</td>
<td>4-24 %</td>
</tr>
</tbody>
</table>
Low energy platform

- Collinear laser spectroscopy
- β-delayed γ spectroscopy (laser)
- $\beta-\nu$ angular correlation: LPCtrap
- Mass measurements: MLLTrap
- β-delayed charge part. Emission
- (Trap-assisted) β-decay, TAS
REGLIS³ day 1 experiments

- **Red boxes:** Laser (optical) spectroscopy data available
- **Empty 'gaps':** Beams are not available at high temperature ISOL systems (refractory or above uranium)

"Day 1" experiments

- commissioning
- laser and decay spectroscopy - mass measurements MR-TOF
 - N=Z region around and below 100Sn: shell evolution, astrophysics
 - heavy element region: shapes, stability
 - ^{254}No: atomic physics ("Day 2" experiment)
UNIQUE Opportunities:
SPIRAL2 Phase 1 + - GANIL (AGATA, …)

Probing nuclei properties with unique complementarity techniques

SIRIUS

Ground State properties

S³-SIRIUS/DESIR
(Mass – Size – J^π – Moments)

Decay spectroscopy
S³-SIRIUS/DESIR

In-Beam spectroscopy
AGATA-VAMOS@GANIL
S³

Excited state properties

SIRIUS

REGIS³

DE\ddaggerIR

Ground State properties
Détermination de V_{ud} depuis les transitions $0^+ \rightarrow 0^+$ et miroirs

$V_{ud} = 0.97425 (22)$

Hardy J C and Towner I S 2009 Nucl. Phys. A 254 221

MLLTrap

LPCTrap

CENBG tape station

Tape system

Phase 1++

$T_z = 0, -1, -2$ decays

$T_z = -1/2$ mirror decays

$V_{ud} = 0.97425 (22)$

Détermination de V_{ud} à une précision équivalente des 0^+ 0^+ depuis les transitions miroirs
Conclusions

- SPIRAL2 phase 1 under final construction: “First generation ECOS accelerator”
 - Commissioning of the accelerator will start in 2015

- SPIRAL2 phase 1++ (new injector A/Q=7) design will start 2015

- S3 is a low energy in-flight separator for the Spiral2 stable beams
 - Fusion-evaporation, two-step reactions, rare channels, electron exchange…
 - Designed for the selection and identification of rare events
 - 2 steps rejection and >350 Mass resolution
 - High transmission of evaporation residues
 - High versatility

- Two basic detection set-ups
 - Implantation-decay spectroscopy station
 - In gas cell laser ionization & spec.
 - First beam in 2016

You are welcome to join the collaboration