High Power Targets – Task 1

- Proposal
- Deliverables
- Summary of the state-of-the-art about High Power Targets
- Conclusions

ECOS-task 1 Proposal

Description

Task 1 High-power thin-target technology (participants: CNRS + GANIL+GSI)

- The maximum usable primary-beam current with thin targets is among others determined by the **long-term stability of the thin targets under irradiation**. High beam intensities lead to a considerable heating of the targets, and, hence to thermal stress, possibly phase transitions, oxidation or reduction of the chemical compounds and diffusion into the target backing, respectively.
- We propose to study these phenomena in detail and to compare for example the performance of thin actinide targets as function of the production method (painting, spray-painting, electrolysis, electro-deposition, evaporation and sputtering), the used chemical compounds (oxide, carbide, others) and backings/coatings, respectively.
- The way is to bring together labs that use different techniques for target preparation and those that can test the target performance under "real" conditions.
- For this task ECOS will have the duty to organize the collaboration and exchange of expertise on the development of high-power target technology.

✓ Manufacturing of targets ✓ Availability of target materials

ECOS-task 1 Deliverables

Deliverables

D-NA02.1: Report on the development of high-power thin-target technology with special emphasis on new techniques and methods that will allow increasing the primary-beam intensity usable with such targets. [month 40]

 Chapter 2.3.2 in the written contribution of the ENSAR-ECOS Workshop on FUture Super-Heavy Element Strategy: http://www.ensarfp7.eu/workshops/fushe2012
"Exploring and Harvesting the Island of stability

Strategy for near and far future developments in superheavy element research"

- Contributors: B. Lommel, B. Kindler (GSI); J. B. Roberto (ORNL); K. Eberhardt (univ. Mainz)
- First test experiments at GANIL with the S3 prototype target station

Problematic

R	eaction	Hot/warm	Cold	
Beam		⁴⁸ Ca	⁷⁰ Zn	
	E (A.MeV); Ι (pμA)	5;10	5;10	
Targets		$Ti + Cm_2O_3$	C + Pb	
		(electro-deposition)	(Evaporation)	
	Thickness (µg/cm²)	900 (=2µm) + 500	30 + 450	
	dE (MeV)	12.3 + 4.2	1.0 + 6.1	
	dP(W)	165	71	

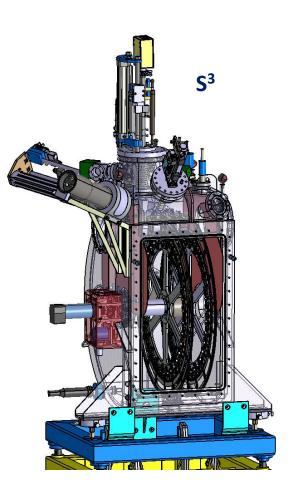
➔ Rotating wheels ➔ gas or liquid targets ?

Compound material with higher melting point

→ R&D on target manufacturing and study of irradiation damage

Target stations

Lab	G	SI	JINR RIKEN GA		GANIL	GANIL		
Accelerator		LAC 6 duty cycle)	U-400R	DC-280		CSS1	LIN	AC
Separator	TASCA	SHIP	DGFRS		GARIS	FULIS, LISE 3	S3	S3
Beams			⁴⁸ Ca	⁴⁸ Ca	⁶⁴ Ni, ⁷⁰ Zn		⁴⁸ Ca	⁷⁰ Zn
I (pμA)	1 – 2		2.5	10	1	0.5-2	5-10	2-5
lsotopes	²⁴⁴ Pu, ²⁴³ Am, ²⁴⁹ Bk, ²⁴⁹ Cf	^{206,208} Pb, ²⁰⁹ Bi, ²³⁸ U, ²⁴⁸ Cm	^{245,246,248} Cm, ^{242,244} Pu, ²⁴³ Am, ²⁴⁹ Cf, ²⁴⁹ Bk		²⁰⁸ Pb, ²⁰⁹ Bi	²⁰⁸ Pb, ²⁰⁹ Bi	Am, Cm, Pu	Pb, Bi
- Thickness(μg/ cm²)	500-700		300-400		450	350	450	450
-Area (cm²)	6	30 or 3 (for Cm)	8		7.85	15	~8	21
Wheel								
-Speed (rpm)	2249	1125	2000		3000	2000	5000	3000
-Radius (cm)	5	15.5	5		15	33.5	8	33.5
-Number targets	4	8	6		16	18	12	18


→ Beam spot size: gaussian → rectangular
→ Cooling ? (S. Antalic et al, NIMA 530 (2004)185-193)
→ Limits of Φ (mm)? w (rpm)?

Target Stations

ting 2014 - Orsay, 2014 28th October

Thin foils - requirements

- $\checkmark~500~\mu g/cm^2$ ±2% over active area from 3 to 15 cm^2
- ✓ High chemical purity of the material (reduce unwanted reaction products)
- $\checkmark\,$ For expensive material, recovery of the used material
- ✓ High fabrication yields
- ✓ Small, simple, reproducible set-up of process

Thin foils – stable material

- $\checkmark\,$ Mainly deposition on carbon foils by evaporation process
- ✓ For U: magnetron sputtering on Ti or C backings
- ✓ Compounds with higher melting points
- ✓ Target laboratories in Europe:
 - SHE: GSI; IPNO; (GANIL);

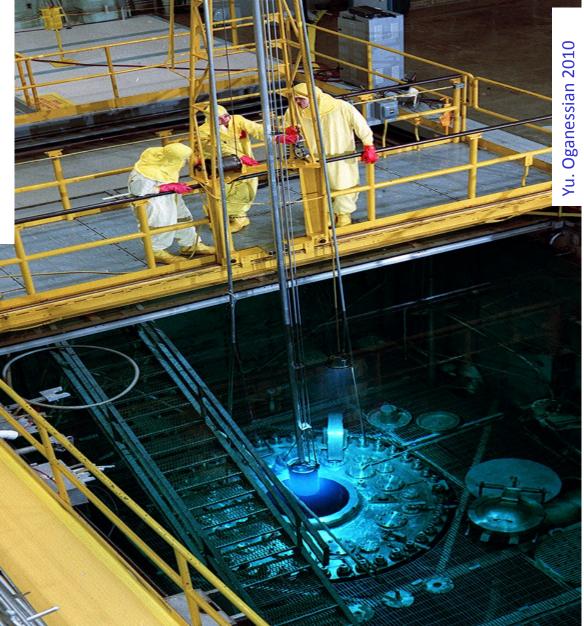
Other physics: SLCJ Varsow (Poland); HHNIPNE –IFIN HH (Roumania); STFC Daresbury (UK)

Ref: B. Lommel et B. Kindler, Encyclopedia of Applied High energy and Particle Physics (2009) 619

- B. Lommel et al, NIMA 480 (2002) 16-21
- B. Kindler et al, NIMA 561 (2006) 107-111

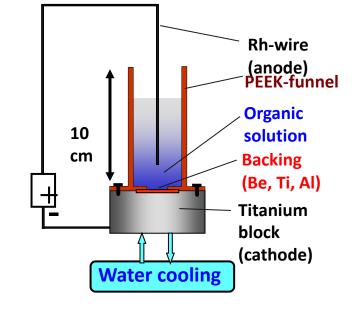
Thin foils - Actinides

Supplier


- ✓ Oak Ridge National Laboratory as part of the Department of Energy's (DOE) Office of Nuclear Physics Isotope Development and Production for Research and Applications Program:
 - ✓ Pu, Am, Cm, Cf, Bk (→ Z=113-118 @JINR)
 - Production facility + chemical separation + purification: High Flux Isotope Reactor(HFIR) + Radiochemical Engineering Development Center (REDC)
 - ✓ ²⁴⁹Bk (\approx 80 mg) with pure ²⁴⁸Cm + thermal neutron filtering
 - ✓ ²⁵¹Cf (1 mg/h) @ EMIS project →40µg of ²⁵⁴Es
 - Ref: J. B.Roberto et al, "Actinide Isotopes for Synthesis of Superheavy Nuclei," 5th International Conference of Fission and Properties on Neutron-Rich Nuclei, Sanibel Island, Florida, November 4-10, 2012

The Bk-249 was produced at ORNL (USA) by irradiation: of Cm and Am targets for approximately 250 days by thermal-neutron flux of 2.5×10^{15} neutrons/cm²·s in the HFIR (High Flux Isotope Reactor).

Irradiation ended December 2008

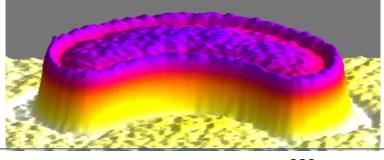


Thin foils - Actinides

Fabrication methods

- $\checkmark\,$ Electro-deposition on Ti (2 μm) backings by molecular plating
- ✓ To be tested: Polymer-assisted deposition, E-D with ionic liquids, superhydrophobic surfaces or inter-metallic targets
- ✓ Target laboratories in Europe: SHE: Univ. Mainz; CACAO@IPNO;

Ref: K. Eberhardt et al, NIMA 590 (2008) 134-140; M.A. Garcia et al, NIMA 613 (2010) 396-400; D. Renish et al, NIMA 676 (2012) 84-89; I.Usoltsev et al, NIMA 691 (2012) 5-9; C.-O. Bacri et al, NIMA 613 (2010) 357-359



Thin foils - Characterization

- ✓ Characterize physical parameters :layer thickness and homogeneity
- ✓ Understanding the process of deposition
- Existing modern analytical techniques: XRF(X-ray fluorescence), XRD(X-ray Diffraction), XPS(X-ray Photonelectron Spectrometry), SEM(Scanning Electron Microscopy), AFM (Atomic Force Microscopy)
- ✓ Labs: Univ. Mainz, IRMM, LMU

Ref: D. Liebe et al NIMA 590 (2008) 145-150

Radiographic images of a ²³²Th-Target produced by PVD @ [M] (J. Szeripo)

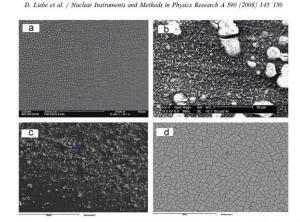


Fig. 2. Scanning electron micrographs of (a) Ho (on Ti, 200 \times , 20 kV), (b) Gd (on Al, 500 \times , 10 kV), (c) Sm (on Ti, 200 \times , 20 kV), and (d) U (on Ti, 200 \times , 20 kV).

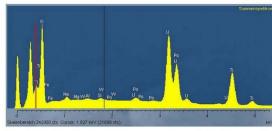


Fig. 3. EDX spectrum of U on a Ti backing

Thermal measurements

J Radioanal Nucl Chem (2014) 299:1073–1079 DOI 10.1007/s10967-013-2645-1

High intensity target wheel at TASCA: target wheel control system and target monitoring

E. Jäger · H. Brand · Ch. E. Düllmann · J. Khuyagbaatar · J. Krier · M. Schädel · T. Torres · A. Yakushev

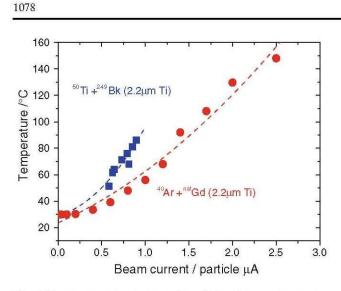


Fig. 6 Target temperature as registered by the pyrometer as a function of the beam intensity. The real maximum temperature may be higher

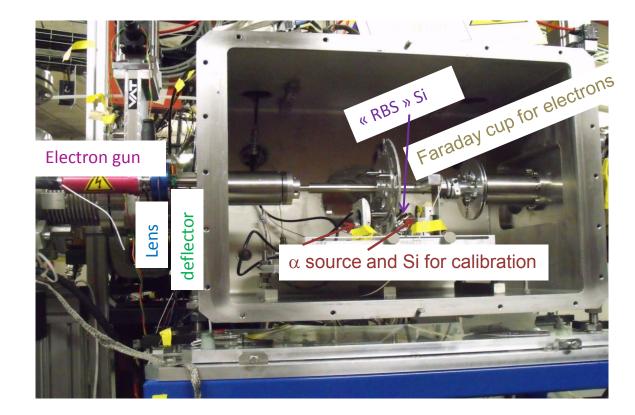
distributed The new TASCA terest wheel has an annew

J Radioanal Nucl Chem (2014) 299:1073-1079

Fig. 7 The 249 Cf target wheel after the bombardment with the 50 Ti beam dose of 1 \times 10¹⁹

Test bench @ GANIL

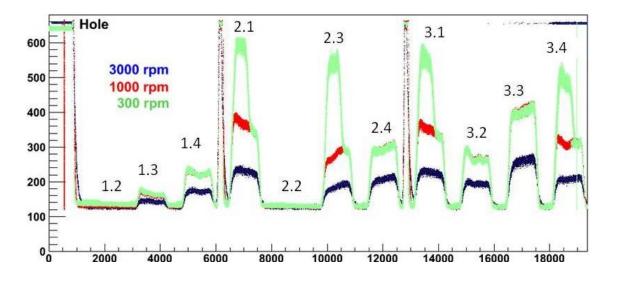
- Prototype S³ Target station @ LISE2000
 - Trick: getting equivalent dP/dV
 - Heavy ion beam $\rightarrow \Delta E^*2$ or 3

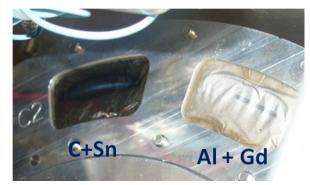

V					
Beam	⁴⁸ Ca	⁷⁰ Zn	¹²⁹ Xe		
Ε (A.MeV); Ι (pμA)	5;1	5;1	7.7;0.1		
σx*σy(mm²)	0.5*2.5	0.5*2.5	1.7*1.15		
Фwheel (mm)	160	670	160		
Targets	Ti + Cm ₂ O ₃	C + Pb	Ti + Gd ₂ O ₃	C + Sn	
Thickness (μg/cm²)	900 + 500	30 + 450	900 + 500	30 + 450	
dE (MeV)	12.3 + 4.2	1.0 + 6.1	43.5 + 18.6	2.0 + 15	
dP/dV _{circ} (W/mm ³)	1.66 + 1.90	0.49 + 0.99	1.28 + 0.88	0.93 + 1.46	

• σ_v smaller

Test bench @ GANIL

2 wheels Φ=160 mm ω up to 5000 rpm 12 targets on each wheel





Test bench @ GANIL

- Few UTs in 2011, 2012, next end November 2014

- Experimental set-up tested and to be upgraded
- tests with different material produced by various techniques (Orsay, Germany ...)

C. Stodel et al, INTDS14, to be published JRNC

Meetings for knowledge exchange and expertise of targets labs

- Since 2007: Discussion with GSI/Mainz (S. Hofmann, July 10, Cm targets at GSI-SHIP; C. Dülmann, K. Eberhardt, M. Schaëdel)
- October 2009 : Discussion on targets for S3: Intitut Kernchemie, Mainz (K. Eberhardt, J. Kratz, J. Runke), GSI (B. Lommel, C. Düllmann), LBL (H. Nitsche), CACAO (Ch. O. Bacri, V. Petitbon), GANIL (H. Savajols, Ch. Stodel) -
- November 2010: Orsay (CO Bacri) with IRMM, Mainz, GSI (presentation of each labs, requests, manpower...)
- INTDS conferences (2010, 2012, 2014)

Conclusions:

European needs (SHE, astrophysics, fuel cycle...), common questions about the behavior of targets (depending on backings) under irradiation, supply, R&D for fabrication of larger targets, why not common targets???....

How to organize together? Enlarge the know-hows, sharings of skills....

CONCLUSIONS

- ✓ Target stations with present technology (wheels)
 - \checkmark Soon limited to the beam intensities: 10 pµA ? More ?
 - ✓ Common aspects → why not going to a "common design" of targets/wheels ?
- ✓ Other systems ? Liquid / gas targets R&D ?
- ✓ Actinide material supply scarce/expensive
- ✓ R&D on target (stable and actinide) fabrication feasible and needed: alternative backing materials; existing community but not so large
- ✓ Characterization of targets to be developed (pre- and post-irradiation)
- ✓ In beam tests possible → chemistry + material + nuclear physics synergia

CONCLUSIONS

✓ Knowledge exchange and expertise of targets lab
✓ Feedback from target irradiations (GSI, Dubna...)

→ Joint effort of labs necessary with interdisciplinary

→ Close collaboration between target makers, target users and accelerator specialists.

