Nuclear Physics Highlights from Stable Ion Beam Facilities ECOS -2011-2014

Plan of the talk

A variety of Physics Q's (suggested by the labs)

Tools and phenomena Selectivity and sensitivity

Tomorrow ?

P.T. Greenlees^{1,*} I. Rubert² I. Piot² B. I.P. Gall² I. L. Andersson³ M. Asai⁴ Z. Asfari² D. M. Cox³ F. Dechery

- Solid angle acceptance (central m/q and energy) 10 msr
- Typical transmission ~12% per charge state

de la

Fission life-times : a link towards the production of SHE

M.O. Frégeau et al., Phys. Rev. Lett. 108, 12270 (2012)

• X_K fluorescence of the atom with 120 protons has been observed.

 Compound nucleus lifetime of the order of the K-vacancy lifetime (~10⁻¹⁸s)

New Collaboration: GANIL-IPNO-SPhN?-ANU

Measure in coincidence with X-rays The angular distribution of fragments

•Determination of the fusion components on 4π from X-ray fluorescence Reconcile the most probable fission times inferred from angular distributions with the average fission times inferred from direct measurements

200

Ex (MeV)

E (MeV)

Applications reactor heat, radio toxicity control

Isotopic distribution of fission fragments : OpenF. Farget et al., GANILQuestions

What happens when an exotic nuclei undergoes fast rotation Is this the next question we want to address

Prompt spectroscopy of M and Z identified fission frag

²³⁸U+⁹Be at 6 Mev/U Tomorrow AGATA@GANIL

> Thus uniquely identify M and ZDoppler correction for the emitted γ rays \vec{v} of the fragment & angle of the segment of the clover detector

A. Navin and M. Rejmund McGraw-Hill Yearbook of Science & Technology (2014) pg

200

100

Coun

150

100

100

Neutron Rich ₄₅Rh

Work in progress

Lithium Inverse Cinematiques ORsay Neutron source

Isoscalar Component of the PDR for Nuclei with n-excess

Inelastic scattering of ¹⁷O @ 20 MeV/u on different targets + y-rays in coincidence

TWO EXPERIMENTS PERFORMED:

TRACE

TKE [MeV]

Studied Nuclei: 208Pb 90Zr
 R. Nicolini (Università di Milano /INFN)
 D.Mengoni (Università di Padova/INFN)

Studied nuclei: 208Pb, 124Sn,140Ce
 M. Kmiecik (IFJ PAN Kraków) ,
 F. Crespi (Univ. di Milano/INFN)

F.C.L. Crespi et al., EPJ WoC, INPC 2013

Pygmy Dipole Resonance in ¹²⁴Sn by inelastic scattering of ¹⁷O L. Pellegri Phys. Lett. B (in press)

Dominant Isoscalar excitation: n and p transition densities are **in phase** inside the nucleus, at **the surface only the n-part survives** Inelastic scattering: Interaction Surface Peaked (¹⁷O)

The emitted γ rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented $\Delta E - E$ silicon telescopes.

Isospin character of low-lying pygmy states in ²⁰⁸Pb via inelastic scattering of ¹⁷O F.C.L. Crespi et al., PRL 113, 012501 (2014)

Isospin Character of Low-Lying Pygmy Dipole States in ²⁰⁸Pb via Inelastic Scattering of ¹⁷O Ions

The *E*1 transitions cross sections for ²⁰⁸Pb were analyzed for the first time using a microscopic form factor and the isoscalar potential was found to depend on the presence of the neutron skin. A

Pygmy dipole resonance in $^{124}\mathrm{Sn}$ populated by inelastic scattering of $^{17}\mathrm{O}$

For the 1⁻ states a DWBA analysis based on a microscopically calculated form factor was performed and showed a sensitivity to the surface part of the transition density. Being the transition density dominated on the surface by the neutron component one can deduce that the pygmy states ¹²⁴Sn are associated with the excitation of surface neutrons, mainly those in the neutron skin. Therefore in the future it will be very interesting to perform these studies on the isotopic chain of Sn and other neutron-rich nuclei also using other probes as protons at medium energy. Cyclotron Center Bronowice Institute of Nuclear Physics Polish Academy of Sciences Krakow, Poland

A) Study of collective modes excited by high-energy protons

 HECTOR array to measure high energy gammarays

2. **KRATTA** array (triple Csl telescopes) at forward direction to measure the energy of inelastically scatter protons

3*. **PARIS** Demonstrator for PDR measurements with high-resolution, in coincidence with KRATTA

Hot GDR study in nuclei in the mass region A~120-132 with MEDEA at LNS

Onset of the quenching of the Giant Dipole Resonances at high excitation energies

E* A_{res} ¹¹⁶Sn+¹²C 17A MeV 150 124 190 123 ¹¹⁶Sn+¹²C 23A MeV 132 270 ¹¹⁶Sn+²⁴Mg 17A MeV

D.Santonocito^a), Y.Blumenfeld^b), C. Agodi^a), R.Alba^a), G. Bellia^a),^c), R. Coniglione^a), F. Delaunay^{b)}*, A. Del Zoppo^{a)}, P. Finocchiaro^{a)}, F. Hongmei^{a)}, V. Lima^{b)}, C. Maiolino^{a)}, E. Migneco^{a),c)}, P.Piattelli^{a)}, P. Sapienza^{a)}, J.A. Scarpaci^{b)[†]}, O.Wieland^{d)}

The evolution of the Giant Dipole Resonance properties in nuclei of mass A =120-132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy.

A limiting excitation energy for the collective motion of about $E^*/A \sim 2$ **MeV/A** was exctracted.

ao mass $A \sim 132$. Evidence of a limiting excitation for the collective motion was also extracted in nuclei of mass $A = 60 \div 70$ but the value of about $E^*/A \simeq 5$ MeV, differs significantly from the ones measured for nuclei in the mass region $A = 105 \div 135$ suggesting the existence a mass dependence of the limiting excitation energy per nucleon, for the collective motion. Interesting similarities in trend and absolute values can be found when comparing the limiting excitation energy for the collective motion with the energy at which the plateau of the caloric curve sets in, indicating the onset of liquid-gas phase transition. This feature suggests a possible link between GDR disappearance and liquid-gas phase transition which deserves further investigation from both theoretical and experimental points of view. In particular extending the systematics of the GDR to hot nuclei with $A = 160 \div 180$ could provide further information on the 5 possible link between GDR disappearance and liquid-gas phase transition and therefore shed additional light on the mechanism responsible for the GDR quenching. a) Solid symbols re

represent the spectra after bremsstrahlung subtraction.

b) Statistical gamma spectra compared to CASCADE calculations shown as red lines.

c) Linearized Spectra compared to Lorentzian function used in the calculation for each reactions.

¹⁷⁴W: ORDER-TO-CHAOS TRANSITION

QUASI-CONTINUUM γ - γ MATRICES

High-Spin Fusion Evaporation 50 Ti on 128 Te @ 217 MeV, I \geq 60 \hbar

Goal: populate ¹⁷⁴W at the **highest possible spins** (\geq 60ħ), in order to make the **statistical fluctuation analysis of the ridge-valley structures in the** γ - γ **matrices**, to estimate the number of low-*K* and high-*K* bands and their correlation

PHYSICAL REVIEW C 88, 034312 (2013)

HIGH TEMP **4 Triple Clusters** 2 and 3 folds: $\varepsilon_{2\gamma}=30\%, \varepsilon_{3\gamma}=10\%$ ($M_{\gamma}=30$)

> region. The present results suggest that a K-mixing process due to temperature effects plays an important role already at rather low excitation energy, namely in the onset region of band mixing, here probed by a global analysis of decay properties of the entire body of discrete excited bands. This represents a step forward in the understanding of the basic

V. Vandone et al. Global properties of K hindrance probed by the γ decay of the warm rotating ¹⁷⁴W nucleus

SHAPE TRANSITION IN THE OS ISOTOPES

Shape evolution in the n-rich Os isotopes: prompt γ-ray spectroscopy of ¹⁹⁶Os P.R. John et al. PRC 90 021301 (2014) rapid comm.

Superdeformation in A~40 nuclei

E. Ideguchi (RCNP, Osaka Univ.) – January 2013

Search for superdeformed bands in 35,36 S, 40 Ar via 18 O + 26 Mg -> 44 Ca*

Fig. 1. γ -ray energy spectrum gated 13 02-keV transition. The 1576-, 1302- and 978-keV transitions belong to the same band transition. The peaks 1 beled with the triangles are new transitions of ³⁵S.

Fig. 2. Comparison between experimental and simulated spectra for the residual Doppler shifted 1576-keV peak in the forward and backward angles of the germanium detectors.

Investigations of the orbitals responsible for superdeformation in the mass region, f7/2, nearby are important to infer the existence of superdeformed states in 32 S.

The de-excitation of the superdeformed band was observed from $19/2^-$ to $7/2^-$. The superdeformed band structure was highlighted by the measurement of half-life and relative intensities of the intra-band transition. The $f_{7/2}$ negative parity intruder orbital seems to be responsible for the negative

Shintaro GO (RCNP, Osaka University), ARIS2014 Proceedings

Time Dependent Recoil In Vacuum on H-like ions: ²⁴Mg - revisited

G. Georgiev (CSNSM), A.E. Stuchbery (ANU), Dec. 2012

10

12

16

14 N=Z 18

20

Experiment: High accuracy (< 2%) model independent (*B from first principles*) g-factor value for short-lived (ps) excited states Theory: g-factors of the 2⁺ states in N=Z nuclei should be slightly higher than 0.5 8-fold segmented 0.70 annular detector 0.65 **OUPS** ²⁴Mg+⁹³Nb coulex (Orsay Universal Plunger System) (<u>+</u>) 0.60 0.6 0.55 g(2⁺) 0.5 0.50 20 60 80 100 120 40 0 flight time (ps) A. Kusoglu, A. Stuchbery, G. Georgiev et al. 0.4

Our result: first experimental evidence of deviation from g=0.5 \rightarrow stringent test of the nuclear theories

Nuclear spin orientation in incomplete fusion reactions

Nuclear spin orientation – a must for nuclear moments studies

- Fusion-evaporation reactions 25 % 75 % alignment
- Projectile-fragmentation 8 % 13 %
- Direct reactions (single-nucleon transfer) ~ 13 %
- Incomplete fusion (multi-nucleon transfer?) ???

Amplitude = 8 (1) % Spin alignment = 23 (3) %

Amplitude = 4.8 (8) % **Spin alignment = 12.5 (20) %**

Results:

- considerable spin alignment in ⁷Li induced reactions;
- dependence on the number of transferred nucleons?

G. Georgiev (CSNSM) Dec. 2013 ⁶⁸Ga ⁶⁹Ga ⁷⁰Ga ⁷¹Ga ⁶⁶Zn ⁶⁷Zn ⁶⁸Zn ⁶⁹Zn ⁷⁰Zn ⁶⁵Cu ⁶⁶Cu ⁶⁷Cu ⁶⁸Cu ⁶⁹Cu ⁶⁴Ni ⁶⁵Ni ⁶⁶Ni ⁶⁷Ni ⁶⁸Ni

⁷Li+⁶⁴Ni Triton 1n , triton1pn

Spontaneous chiral symmetry breaking in ¹²⁴Cs

The central European Array for Gamma Levels Evaluation

- Experiment EAGLE [1] array.
- DSA method measurement leading to B(M1) and B(E2) determination.
- Spontaneous chiral symmetry breaking [2] is proven if one can see two rotational bands (chiral partner bands) with similar reduced transition probabilities, (B(M1) and B(E2)).
- Preliminary results for ¹²⁴Cs - B(M1) in partner bands.

[1] J. Mierzejewski et al., NIM A 659, 84 (2011).[2] E. Grodner et al., Eur. Phys. J A27, 325 (2006).

Neutron pair transfer in ⁶⁰Ni+¹¹⁶Sn far below the Coulomb barrier

Transfer strength very close to the g.s. to g.s. transitions

The experimental transfer probabilities are well reproduced, for the first time with heavy ion reactions, in absolute values and in slope by microscopic calculations which incorporate nucleon-nucleon pairing correlations

D.Montanari et al., PRL113(2014)052501

Pairing correlations with MAGNEX

¹⁸O+¹³C at 84 MeV

Barrier distributions for fusion

ŚRODOWISKOWE LABORATORIUM CIĘŻKICH JONÓW

Recent papers: E. Piasecki et al. PRC 85 (2012) 054604 and 054608

NAP

Stellar burning rates and ¹⁴N(p,g)¹⁵O reaction

slowest reaction => it
 determines the rate of
 the CNO cycle
 → age of globular clusters
 → Solar Composition
 Problem

The sub-threshold resonance corresponding to the <u>first excited 3/2[±]</u> <u>state in ¹⁵O</u> is predicted to play a dominant role when extrapolating the cross-section to the Gamow peak region

width of the resonance <=> lifetime of the nuclear state

First application of the high gamma energy resolution and position sensitivity of AGATA to investigate ≈fs nuclear level lifetimes

Lifetime measurement of the 6.79 MeV state in ¹⁵O with the AGATA Demonstrator

4 asymmetric triple-clusters 12 36-fold **segmented** HPGe

first interaction point and γ energy event-by-event: Lineshape analysis with a few degrees resolution

Energy vs theta first interaction point

Lineshape analysis for the 6.79 MeV state in ¹⁵O

C. Michelangelo (pvt Comm)

theta [deg]

Nuclear astrophysics @ LNS – Trojan Horse Method Applications

Red line Rmatrix based on THM data Points, direct measurements

First time in Gamow window (<500 keV)

Reaction rate is calculated in the AGB star temperature window for the first time. The ratio to the NACRE evaluation is reported in panel b

```
THE ASTROPHYSICAL JOURNAL LETTERS, 739:L54 (6pp), 2011 October 1 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
```

A. Tumino et al . Acta Phys.Pol. B45, 181 (2014)

THM is an indirect method that allow to extract nuclear information of a two-body reaction, even at astrophysical energies, by means of the quasi-free contribution in an appropriate three-body reaction.

 $A + x \rightarrow C + c$; $A + a \rightarrow C + c + b$;

¹⁹F(p,α)¹⁶O (two-body reaction) studied at LNS via ¹⁹F(d,αn)¹⁶O (three-body reaction) At 50 MeV @Tandem

Search for new resonant states in ¹⁰C and ¹¹C and their impact on the cosmological lithium problem

F. Hammache, N. de Sereville, I. Stefan

Primordial nucleosynthesis (BBN) is one of the three evidences for the Big-Bang model

When T < $10^9 \text{ K} \rightarrow \text{BBN starts}$

- Production of D, ³He, ⁴He, ⁷Li
- Abundances depend on baryonic density
- D, ³He, ⁴He, observations agree with predictions (BBN + CMB) Metal poor halo dwarf stars

⁷Li problem: $(^{7}Li/H)_{BBN} / (^{7}Li/H)_{obs} = 4$

Possible explanations:

- Physics beyond standard model: super-symmetry, constant variation,
- Observations: can ⁷Li be uniformly destroyed in the Splite plateau region?
- Nuclear physics: ⁷Li produced by ⁷Be EC & ³He(⁴He, γ_{o})⁷Be known better than 15%

Last proposed solution studied with SPLITPOLE @ IPN Orsay

Finally, our two results concerning ¹⁰C and ¹¹C compound nuclei put an end to the various discussions concerning the missing resonant states in these nuclei, which were thought to partially or totally solve the ⁷Li problem [19–21] and exclude ⁷Be + ³He and ⁷Be + ⁴He reaction channels as responsible for the observed ⁷Li deficit. Direct kinematics ⁷⁰Zn(d,³He)⁶⁹Cu with 27 MeV deuteron beam and SPLITPOLE spectrometer

Part of the program: Systematic of the evolution for $f_{7/2}$ proton-hole strength from stability to ⁷⁸Ni ?

Spectroscopy of proton-rich 66 Se up to $J^{\pi} = 6^+$: Isospin-breaking effect in the A = 66 isobaric triplet

Timescale of the multifragmentation is directly reflected in the shape of the largest fragment charge/mass distribution

INDRA collaboration +M. Ploszajczak (GANIL) +R. Botet (LPS Orsay)

D. Gruyer et al., Phys. Rev. Lett. 110, 172701 (2013)

Studies of heavy ions reactions with the CHIMERA@LNS

CHIMERA@LNS

 Reaction Dynamics at Fermi energy (*)
 EOS - density dependence of the symmetry term (**)
 Reactions and Structure with Radioactive Fragmentation Beam (***)
 Correlation and interferometry : FARCOS (****)
 DSSD(300+1500+Csl)

***) In-Flight RIB production

(*) Dyn/Stat Fission: Size or Isospin effects?

Stochastic Mean Field (SMF) +GEMINI $E_{sym} \approx (\rho / \rho_0)^2$ $I_4 \qquad \qquad Primary fragments$ $I_5 \qquad \qquad Primary fragments$ $I_7 \qquad \qquad Primary fragmen$

(**)Comparison of IMF data with

E.De Filippo et al, PRC86 014610 2012

(****) CHIMERA + FARCOS correlator

B) Study of the dynamics of few-body systems

1. Detector BINA (moved from KVI Groningen) for light nuclei reactions studies

Wall:

- MWPC (3 planes)
- ∆E (24 x 2 mm)
- E (20 x 120 mm)
 Ball:
- Phoswich (149 x 90/30 mm)

CCB Krakow and HIL Warsaw are in the ENSAR2 H2020 project as TNA facility

ECOS: a Path to ...

What can we different that we cannot do today?

What are the physics questions that we specifically that we want to address for which we need very intense stable beams ?

What are the things we need to think and develop (other than the machine)

To Boldly Go Where No Man

(Other speaker are going to answer this)

Evolution to revolution