## **ECOS-EURISOL** Town Meeting



IPN Orsay, 30 October 2014

### The application of laser resonance ionization inside FEBIAD-type ion sources for ISOL facilities.

Bruce Marsh, CERN EN-STI-LP









-

Proton beam from PSB

> 20 m optical path 3 mm diameter ion source

~10 cm

- Surface ionized contamination
   long standing issue but no universal solution has been found
- Limited ion capacity (~ 1 uA) - possible issue for EURISOL, ISOL@MYRRHA etc.
- Not currently suitable for liquid targets
- Limited scope for non-standard RILIS applications



## Using a FEBIAD as a laser/atom interaction region





#### **EURIMIS (EURISOL Multi-megawatt Ion Sources)**

#### WP1: coupling of the IRENA radial-FEBIAD device and the laser ion source





|        | Partners                    | Requested budget | Responsable Labo                           |
|--------|-----------------------------|------------------|--------------------------------------------|
|        | CERN                        | 0 k€             | B. Marsh                                   |
|        | IFJ (Poland)                | 25 k€            | R. Misiak                                  |
|        | IPNO                        | 210 k€           | C. Lau                                     |
|        | LNL-INFN                    | 60 k€            | A. Andrighetto                             |
|        | SLCJ (Poland)               | 25 k€            | J. Choinski                                |
|        | Work Package                |                  | ERANET for Nuclear Physics Infrastructures |
|        | Project coordination        |                  |                                            |
|        | WP1: IRENA device for the   | RILIS C.         | C. Lau et al.,                             |
|        | WP2: Beam extraction        | extraction       | JRISUL-NEI,                                |
| w<br>w | WP3: Physicochemical alte   | ration 20        | 2011                                       |
|        | WP4: Material for selective | regulation       | /11                                        |



## RILIS R&D setup at ISOLDE off-line separator



Ionization scheme for gallium

#### First Off-line test



#### Modified (2.5 mm diameter entrance aperture) VADIS + Ga mass marker



LXNET Tom Day Goodacre (CERN, Manchester) – PhD work



#### 1) RILIS efficiency is comparable to VADIS efficiency





### 2) FAST switching between RILIS / VADIS modes





## 2) FAST switching between RILIS / VADIS modes





## 2) FAST switching between RILIS / VADIS modes





## 3) Long residence time of ions wrt. hot cavity

#### **Modified VADIS + Ga mass marker**



# 1<sup>st</sup> prototype: simulation (2/2)

#### 3) Long residence time of ions wrt. not cavity

#### **Modified VADIS + Ga mass marker**





### First On-line test





CERN

The first RILIS ionized isotopes from a liquid target

**L K NET Tom Day Goodacre (CERN, Manchester) – PhD work** 

### Establishing modes of operation





### Establishing modes of operation

300

200

100

0 -

 $8 \times 10^{-10}$ 

0

Ga Ion Signal (pA)







### Establishing modes of operation







### Proposal for 1st physics application

#### EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

#### In-source laser spectroscopy of mercury isotopes

October 10, 2014

L. P. Gaffney<sup>1</sup>, T. Day Goodacre<sup>2,3</sup>, A. N. Andreyev<sup>4</sup>, M. Seliverstov<sup>5,2</sup>, N. Althubiti<sup>3</sup>, B. Andel<sup>11</sup>, S. Antalic<sup>11</sup>, D. Atanasov<sup>10</sup>, A. E. Barzakh<sup>5</sup>, K. Blaum<sup>10</sup>, J. Billowes<sup>3</sup>, T. E. Cocolios<sup>3</sup>, J. Cubiss<sup>4</sup>, G. Farooq-Smith<sup>3</sup>, D. V. Fedorov<sup>5</sup>, V. N. Fedosseev<sup>2</sup>, R. Ferrer<sup>1</sup>, K. T. Flanagan<sup>3</sup>, L. Ghys<sup>1,12</sup>, C. Granados<sup>1</sup>, A. Gottberg<sup>2</sup>, F. Herfurth<sup>8</sup>, M. Huyse<sup>1</sup>, D. G. Jenkins<sup>4</sup>, D. Kisler<sup>10</sup>, S. Kreim<sup>10,2</sup>, T. Kron<sup>7</sup>, Yu. Kudryavtsev<sup>1</sup>, D. Lunney<sup>13</sup>, K. M. Lynch<sup>1,2</sup>, B. A. Marsh<sup>2</sup>, V. Manea<sup>10</sup>, T. M. Mendonca<sup>2</sup>, P. L. Molkanov<sup>5</sup>, D. Neidherr<sup>8</sup>, R. Raabe<sup>1</sup>, J. P. Ramos<sup>2</sup>, S. Raeder<sup>1</sup>, E. Rapisarda<sup>2</sup>, M. Rosenbusch<sup>9</sup>, R. E. Rossel<sup>2,7</sup>, S. Rothe<sup>2</sup>, L. Schweikhard<sup>9</sup>, S. Sels<sup>1</sup>, T. Stora<sup>2</sup>, I. Tsekhanovich<sup>6</sup>, C. Van Beveren<sup>1</sup>, P. Van Duppen<sup>1</sup>, M. Veinhard<sup>2</sup>, R. Wadsworth<sup>4</sup>, A. Welker<sup>14</sup>, F. Wienholtz<sup>9</sup>, K. Wendt<sup>7</sup>, G. L. Wilson<sup>4</sup>, S. Witkins<sup>3</sup>, R. Wolf<sup>10</sup>, K. Zuber<sup>14</sup>

<sup>1</sup>KU Leuven, Belgium; <sup>2</sup>CERN-ISOLDE, CH; <sup>3</sup>The University of Manchester, UK; <sup>4</sup>The University of York, UK; <sup>5</sup>PNPI, Gatchina, Russia; <sup>6</sup>CENBG, Bordeaux, France; <sup>7</sup>Johannes Gutenberg University of Mainz, Germany; <sup>8</sup>GSI, Darmstadt, Germany; <sup>9</sup>Ernst-Moritz-Arndt Universität Greifswald, Germany; <sup>10</sup>Max-Planck-Institut für Kernphysik, Heidelberg, Germany; <sup>11</sup>Comenius University, Bratislava, Slovakia; <sup>12</sup>SCK•CEN, Mol, Belgium; <sup>13</sup>CSNSM-IN2P3-CNRS, Orsay, France; <sup>14</sup>Technische Universität Dresden, Germany;

> Spokespersons: Liam Paul Gaffney [Liam.Gaffney@fys.kuleuven.be], Thomas Day Goodacre [Thomas.Day.Goodacre@cern.ch], Andrei Andreyev [Andrei.Andreyev@york.ac.uk], Maxim Seliverstov [Maxim.Seliverstov@cern.ch] Contact person: Bruce Marsh [Bruce.Marsh@cern.ch]

#### **First off-line demonstration**





#### New option for surface ion reduction

- Easy and fast 'switch on/off' of non-selective ionisation / electron impact effects
- Immediately compatible with liquid targets
- Greater ion capacity is expected (> 100 uA) High-power target application?
- New opportunity for 2-photon spectroscopy
- RILIS ionized non metals and noble gases?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?





### Introducing new RILIS + FEBIAD opportunities

- New option for surface ion reduction
- Easy and fast 'switch on/off' of non-selective ionisation / electron impact effects
- Immediately compatible with liquid targets
- Greater ion capacity is expected (> 100 uA) High-power target application?
- New opportunity for 2-photon spectroscopy
- RILIS ionized non metals and noble gases?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?





- New option for surface ion reduction
- Easy and fast 'switch on/off' of non-selective ionisation / electron impact effects
- Immediately compatible with liquid targets
- Greater ion capacity is expected (> 100 uA) High-power target application?
- New opportunity for 2-photon spectroscopy
- RILIS ionized non-metals and noble gases or optical pumping of ions?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?





### Introducing new RILIS + FEBIAD opportunities

• New option for surface ion reduction

#### ower target application?

# 2<sup>nd</sup> prototype: idea

- Ideal 2+ RILIS ionization environment?
  - Towards RILIS ionized refractory metal beams at thick-target facilities?





- RILIS inside a standard VADIS/FEBIAD works extremely well
- RILIS, VADIS and VADLIS operating modes are tested on-line
- This open the doors for promising new R&D for many RILIS applications
- Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
- So far we have only tested 'standard' FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.



- RILIS inside a standard VADIS/FEBIAD works extremely well
- RILIS, VADIS and VADLIS operating modes are tested on-line
- This open the doors for promising new R&D for many RILIS applications
- Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
- So far we have only tested 'standard' FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.



- RILIS inside a standard VADIS/FEBIAD works extremely well
- RILIS, VADIS and VADLIS operating modes are tested on-line
- This open the doors for promising new R&D for many RILIS applications
- Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
- So far we have only tested 'standard' FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.

### Acknowledgements







R. Catherall



B. Crepieux T. Day Goodacre

D. V. Fedorov

V. N. Fedosseev

T. Giles

A. Gottberg

T.M. Mendonca

J. P. Ramos

R. E. Rossel

S. Rothe

C. Seiffert

T. Stora

#### EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

#### In-source laser spectroscopy of mercury isotopes October 10, 2014

L. P. Gaffney<sup>1</sup>, T. Day Goodacre<sup>2,3</sup>, A. N. Andreyev<sup>4</sup>, M. Seliverstov<sup>5,2</sup>, N. Althubiti<sup>3</sup>, B. Andel<sup>11</sup>, S. Antalic<sup>11</sup>, D. Atanasov<sup>10</sup>, A. E. Barzakh<sup>5</sup>, K. Blaum<sup>10</sup>, J. Billowes<sup>3</sup>, T. E. Cocolios<sup>3</sup>, J. Cubiss<sup>4</sup>, G. Farooq-Smith<sup>3</sup>, D. V. Fedorov<sup>5</sup>, V. N. Fedosseev<sup>2</sup>, R. Ferrer<sup>1</sup>, K. T. Flanagan<sup>3</sup>, L. Ghys<sup>1,12</sup>, C. Granados<sup>1</sup>, A. Gottberg<sup>2</sup>, F. Herfurth<sup>8</sup>, M. Huyse<sup>1</sup>, D. G. Jenkins<sup>4</sup>, D. Kisler<sup>10</sup>, S. Kreim<sup>10,2</sup>, T. Kron<sup>7</sup>, Yu. Kudryavtsev<sup>1</sup>, D. Lunney<sup>13</sup>, K. M. Lynch<sup>1,2</sup>, B. A. Marsh<sup>2</sup>, V. Manea<sup>10</sup>, T. M. Mendonca<sup>2</sup>,
P. L. Molkanov<sup>5</sup>, D. Neidherr<sup>8</sup>, R. Raabe<sup>1</sup>, J. P. Ramos<sup>2</sup>, S. Raeder<sup>1</sup>, E. Rapisarda<sup>2</sup>, M. Rosenbusch<sup>9</sup>, R. E. Rossel<sup>2,7</sup>, S. Rothe<sup>2</sup>, L. Schweikhard<sup>9</sup>, S. Sels<sup>1</sup>, T. Stora<sup>2</sup>,
I. Tsekhanovich<sup>6</sup>, C. Van Beveren<sup>1</sup>, P. Van Duppen<sup>1</sup>, M. Veinhard<sup>2</sup>, R. Wadsworth<sup>4</sup>,

A. Welker<sup>14</sup>, F. Wienholtz<sup>9</sup>, K. Wendt<sup>7</sup>, G. L. Wilson<sup>4</sup>, S. Witkins<sup>3</sup>, R. Wolf<sup>10</sup>, K. Zuber<sup>14</sup>

<sup>1</sup>KU Leuven, Belgium; <sup>2</sup>CERN-ISOLDE, CH; <sup>3</sup>The University of Manchester, UK; <sup>4</sup>The University of York, UK; <sup>5</sup>PNPI, Gatchina, Russia; <sup>6</sup>CENBG, Bordeaux, France; <sup>7</sup>Johannes Gutenberg University of Mainz, Germany; <sup>8</sup>GSI, Darmstadt, Germany; <sup>9</sup>Ernst-Moritz-Arndt Universität Greifswald, Germany; <sup>10</sup>Max-Planck-Institut für Kernphysik, Heidelberg, Germany; <sup>11</sup>Comenius University, Bratislava, Slovakia; <sup>12</sup>SCK•CEN, Mol, Belgium; <sup>13</sup>CSNSM-IN2P3-CNRS, Orsay, France; <sup>14</sup>Technische Universität Dresden, Germany;

> Spokespersons: Liam Paul Gaffney [Liam.Gaffney@fys.kuleuven.be], Thomas Day Goodacre [Thomas.Day.Goodacre@cern.ch], Andrei Andreyev [Andrei.Andreyev@york.ac.uk], Maxim Seliverstov [Maxim.Seliverstov@cern.ch] Contact person: Bruce Marsh [Bruce.Marsh@cern.ch]