The application of laser resonance ionization inside FEBIAD-type ion sources for ISOL facilities.

Bruce Marsh, CERN EN-STI-LP
RILIS LASERS

~10 cm

> 20 m optical path
3 mm diameter ion source

Proton beam from PSB
Drawbacks of hot-cavity laser ion sources

- Surface ionized contamination
 - long standing issue but no universal solution has been found
- Limited ion capacity (~ 1 uA)
 - possible issue for EURISOL, ISOL@MYRRHA etc.
- Not currently suitable for liquid targets
- Limited scope for non-standard RILIS applications
Using a FEBIAD as a laser/atom interaction region

- Normally used for non surface-ionizing elements
- Ar or Xe plasma with 130 eV electrons

FEBIAD series:
- MK5
- MK7

VADIS series:
- VD5 is identical to MK5 FEBIAD
 - but with Mo components to reduce contaminants

3D VADIS drawing taken from Alberto Andrighetto’s talk
Cathi Meeting
Sept ‘14
WP1: coupling of the IRENA radial-FEBIAD device and the laser ion source

<table>
<thead>
<tr>
<th>Partners</th>
<th>Requested budget</th>
<th>Responsable Labo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN</td>
<td>0 k€</td>
<td>B. Marsh</td>
</tr>
<tr>
<td>IFJ (Poland)</td>
<td>25 k€</td>
<td>R. Misiak</td>
</tr>
<tr>
<td>IPNO</td>
<td>210 k€</td>
<td>C. Lau</td>
</tr>
<tr>
<td>LNL-INFN</td>
<td>60 k€</td>
<td>A. Andrighetto</td>
</tr>
<tr>
<td>SLCJ (Poland)</td>
<td>25 k€</td>
<td>J. Choinski</td>
</tr>
</tbody>
</table>

Work Package

Project coordination

WP1: IRENA device for the RILIS
WP2: Beam extraction
WP3: Physicochemical alteration
WP4: Material for selective regulation

C. Lau et al., EURISOL-NET, CERN 27 June 2011
RILIS R&D setup at ISOLDE off-line separator

Ionization scheme for gallium
First Off-line test

Modified (2.5 mm diameter entrance aperture) VADIS + Ga mass marker

Optional pulsed ANODE @ laser rep rate
1 --> 100 μs, 0 - 200 V pulses synchronized with lasers, with DC offset
1) RILIS efficiency is comparable to VADIS efficiency
2) FAST switching between RILIS / VADIS modes
2) FAST switching between RILIS / VADIS modes

Laser pulse repetition rate of 10 kHz!
2) FAST switching between RILIS / VADIS modes
3) Long residence time of ions wrt. hot cavity

Modified VADIS + Ga mass marker
3) Long residence time of ions wrt. hot cavity

Modified VADIS + Ga mass marker

CPO simulation of the internal electrical field distribution

- With electrical charges (1 passage through the volume)
- Active volumes (in color): (132V; 149.8V) for MK7; (130V; 149.8V) for MK5

Th diffusion:

The difference in active volumes can justify the efficiency difference.

Hot-cavity RILIS

RILIS mode in VADIS

Total generated currents:
- Electrons: 15 mA (150 eV)
- Ions: 2.5 μA (0.2 eV)
3) Long residence time of ions wrt. hot cavity

Modified VADIS + Ga mass marker

Hot-cavity RILIS

<table>
<thead>
<tr>
<th>Counts</th>
<th>5 kHz</th>
<th>10 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RILIS mode in VADIS

<table>
<thead>
<tr>
<th>gallium ion counts on MCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

VADIS "active" volume

Total generated currents:
- Electrons: 15 mA (150 eV)
- Ions: 2.5 μA (0.2 eV)

CPO simulation of the internal electrical field distribution

- With electrical charges (1 passage through the volume)
- Active volumes (in color): (132V; 149.8V) for MK7; (130V; 149.8V) for MK5

L. Penescu, R. Catherall, J. Lettry, and T. Stora

Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE

Citation: Rev. Sci. Instrum. 81, 02A906 (2010); doi: 10.1063/1.3271245
View online: http://dx.doi.org/10.1063/1.3271245
First On-line test

Standard VADIS + liquid Pb target @ ISOLDE

The first RILIS ionized isotopes from a liquid target

Tom Day Goodacre (CERN, Manchester) – PhD work
Establishing modes of operation
Establishing modes of operation

ANODE:
- 120 V
- 10 V
- 120 V
- 120 V

Hg alpha count rate

178Hg alpha count rate

Alphas per second (counts s⁻¹)

Ion Sources

VADIS
RILIS
VADIS + Blaze
RILIS + VADIS

ANODE: 120 V 10 V 120 V 120 V

Gα Ion Signal (pA)

RILIS Mode
VADIS Mode

Ion Current (A)

No VADIS Ionization

Anode Voltage (V)

Anode Voltage (V)
Establishing modes of operation

These measurements were obtained with a standard VADIS under normal operating conditions - lots of room for optimization!
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Proposal to the ISOLDE and Neutron Time-of-Flight Committee

In-source laser spectroscopy of mercury isotopes
October 10, 2014

1KU Leuven, Belgium; 2CERN-ISOLDE, CH; 3The University of Manchester, UK; 4The University of York, UK; 5PNPI, Gatchina, Russia; 6CENBG, Bordeaux, France; 7Johannes Gutenberg University of Mainz, Germany; 8GSI, Darmstadt, Germany; 9Ernst-Moritz-Arndt Universität Greifswald, Germany; 10Max-Planck-Institut für Kernphysik, Heidelberg, Germany; 11Comenius University, Bratislava, Slovakia; 12CSNSM-IN2P3-CNRS, Orsay, France; 13Technische Universität Dresden, Germany.

Abstract: This proposal follows on from the Letter of Intent, I153. The neutron-deficient mercury isotopes are one of the prime examples of shape coexistence anywhere in the nuclear chart. Wide-ranging and complementary experimental and theoretical approaches have been used to investigate their structure over the last few years, however mean-square charge radii are unknown for isotopes with \(A < 181 \). It is proposed to measure the isotope shift (IS) and hyperfine structure (HFS) of the 253-nm transition in \(^{177}\text{Hg} \) in an attempt to study the propagation of the famous odd-even staggering behaviour. At the other end of the chain, no information exists on the optical spectroscopy of Hg isotopes beyond the \(N = 126 \) shell closure. There is a well-known “kink” in mean-square charge radii beyond this point in the even \(Z = 82 \) elements. It is proposed to measure the IS of \(^{207,208}\text{Hg} \) in order to provide the first information on this effect below \(Z = 82 \).

Requested shifts: 16 shifts, (in a single run)

Spokespersons: Liam Paul Gaffney [Liam.Gaffney@fys.kuleuven.be], Thomas Day Goodacre [Thomas.Day.Goodacre@cern.ch], Andrei Andreyev [Andrei.Andreyev@york.ac.uk], Maxim Seliverstov [Maxim.Seliverstov@cern.ch]

Contact person: Bruce Marsh [Bruce.Marsh@cern.ch]
Introducing new RILIS + FEBIAD opportunities

- **New option for surface ion reduction**
 - Easy and fast ‘switch on/off’ of non-selective ionisation / electron impact effects
 - Immediately compatible with liquid targets
 - Greater ion capacity is expected (> 100 uA) - High-power target application?
 - New opportunity for 2-photon spectroscopy
 - RILIS ionized non metals and noble gases?
 - Ideal 2+ RILIS ionization environment?
 - Towards RILIS ionized refractory metal beams at thick-target facilities?

ANODE grid = surface ion repeller

Low work-function anode material: no surface ionized contaminants
Introducing new RILIS + FEBIAD opportunities

- New option for surface ion reduction
- Easy and fast ‘switch on/off’ of non-selective ionisation / electron impact effects
- Immediately compatible with liquid targets
- Greater ion capacity is expected (> 100 uA) - High-power target application?
- **New opportunity for 2-photon spectroscopy**
- RILIS ionized non metals and noble gases?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?

Modified ANODE grid

\[\text{Molybdenum mirror} \]

50% reflectivity for all wavelengths
- increased efficiency
- **2-photon spectroscopy feasibility?**

CATHODE (LINE)
- \(< 330 \text{ A} \)
- \(T \sim 2000 \text{ C} \)

ANODE
- \(> +100 \text{ V}: \text{VADIS + RILIS ions} \)
- \(< +5 \text{ V}: \text{RILIS ions only} \)

Hg atoms

Hg ionization scheme
- RILIS TiSa + dye + Nd:YAG (Blaze)

GND

50%
Introducing new RILIS + FEBIAD opportunities

- New option for surface ion reduction
- **Easy and fast ‘switch on/off’ of non-selective ionisation / electron impact effects**
- Immediately compatible with liquid targets
- Greater ion capacity is expected (> 100 uA) - High-power target application?
- New opportunity for 2-photon spectroscopy
- RILIS ionized non-metals and noble gases or optical pumping of ions?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?

RILIS lasers overlap with ‘trapped’ ions

Synchronized laser + **anode** pulsing operating cycle

Background-free RILIS ionization

Background-free RILIS ionization

electron impact

(molecular breakup, ionization, excitation of metastable atomic levels)
Introducing new RILIS + FEBIAD opportunities

- New option for surface ion reduction
- Easy ‘switch on/off’ of non-selective ionisation
- Immediately compatible with liquid targets
- **Greater ion capacity is expected (> 100 uA) - High-power target application?**
- New opportunity for 2-photon spectroscopy
- RILIS ionized non metals and noble gases?
- Ideal 2+ RILIS ionization environment?
- Towards RILIS ionized refractory metal beams at thick-target facilities?

[Graph showing the relationship between temperature and intensity for different gas conditions (argon) and current settings.]

Liviu Penescu
ICIS 2009, Gatlinburg, September 2009
Outlook

• RILIS inside a standard VADIS/FEBIAD works extremely well
• RILIS, VADIS and VADLIS operating modes are tested on-line
 • This open the doors for promising new R&D for many RILIS applications
 • Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
 • So far we have only tested ‘standard’ FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.
Outlook

- RILIS inside a standard VADIS/FEBIAD works extremely well
- RILIS, VADIS and VADLIS operating modes are tested on-line
- This open the doors for promising new R&D for many RILIS applications
- Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
- So far we have only tested ‘standard’ FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.
Outlook

- RILIS inside a standard VADIS/FEBIAD works extremely well
- RILIS, VADIS and VADLIS operating modes are tested on-line
- This open the doors for promising new R&D for many RILIS applications
- Much more needs to be understood about the ion dynamics inside the VADIS cavity - Simulations (CPO and VORPAL)
- So far we have only tested ‘standard’ FEBIAD cavities: we can expect that there is a lot of room for improvement through optimisation of the cavity design for RILIS use.
In-source laser spectroscopy of mercury isotopes
October 10, 2014

L. P. Gaffney¹, T. Day Goodacre², A. N. Andreyev⁴, M. Seliverstov⁵, N. Althubiti³, B. Andel¹¹, S. Antalic¹¹, D. Atanasov¹⁰, A. E. Barzakh⁵, K. Blaum¹⁰, J. Billows³, T. E. Cocolios¹, J. Cubiss³, G. Farooq-Smith³, D. V. Fedorov⁵, V. N. Fedosseev², R. Ferrer¹, K. T. Flanagan³, L. Ghys¹², C. Granados¹, A. Gottberg², F. Herfurth³, M. Huyse¹, D. G. Jenkins⁴, D. Kisler¹⁰, S. Kreim², T. Kron⁷, Yu. Kudryavtsev¹, D. Lunney¹³, K. M. Lynch¹², B. A. Marsh², V. Manea¹⁰, T. M. Mendonca², P. L. Molkov¹⁵, D. Neidherr⁴, R. Raabe¹, J. P. Ramos², S. Raeder¹, E. Rapisarda², M. Rosenbusch⁹, R. E. Rossel¹², S. Rothe², L. Schweikhard⁹, S. Sels¹, T. Stora², I. Tsekhanovich⁶, C. Van Beveren¹, P. Van Duppen¹, M. Veinhard², R. Wadsworth¹, A. Welker¹⁴, F. Wienholtz⁹, K. Wendt⁷, G. L. Wilson⁴, S. Witkins³, R. Wolf¹⁰, K. Zuber¹⁴

1 KU Leuven, Belgium; ² CERN-ISOLDE, CH; ³ The University of Manchester, UK; ⁴ The University of York, UK; ⁵ PNPI, Gatchina, Russia; ⁶ CENBG, Bordeaux, France; ⁷ Johannes Gutenberg University of Mainz, Germany; ⁸ GSI, Darmstadt, Germany; ⁹ Ernst-Moritz-Arndt Universität Greifswald, Germany; ¹⁰ Max-Planck-Institut für Kernphysik, Heidelberg, Germany; ¹¹ Comenius University, Bratislava, Slovakia; ¹² SCK•CEN, Mol, Belgium; ¹³ CSNSM-IN2P3-CNRS, Orsay, France; ¹⁴ Technische Universität Dresden, Germany.

Spokespersons: Liam Paul Gaffney [Liam.Gaffney@fys.kuleuven.be], Thomas Day Goodacre [Thomas.Day.Goodacre@cern.ch], Andrei Andreyev [Andrei.Andreyev@york.ac.uk], Maxim Seliverstov [Maxim.Seliverstov@cern.ch]

Contact person: Bruce Marsh [Bruce.Marsh@cern.ch]