

Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud

http://ipnwww.in2p3.fr/

Development of UCX targets in the **ACTILAB** project

- The context of the project
- Highlights on the main achievements
- Final step and outlook

1

Context of the Project

RNB intensities mainly depends on the target performances UC_x target high performances are crucial for next generation facilities:

→ Better understanding material properties ⇔ release kinetics
 + Studying new synthesis techniques

Task #1: Synthesis of new actinide targets

- Task #2: Characterization of new actinide targets
- Task #3:
 Actinide targets properties after irradiation
- Task #4: Online Tests of Actinide Targets

Project submitted with a budget request of 460 K \in , but finally initiated with <u>336 K \in </u>.

CERN	GANIL	INFN	IPNO	PSI
113 K€	38 K€	72 K€	55 K€	58 K€

Investigation of Standard UC_x

Characterization of conventional UC_x using synchrotron-based micro-beam analysis:

Microscopic morphology – buried porosity & chemistry

- Grain size of material is smaller than previously estimated;
- Global phase transition from α -UC₂+UC+5C towards β -UC₂+2C observed at 2100°C

A. Gottberg, et al., submitted

Kinetic stabilization by sub-microscopic $UC - UC_2$ phase competition

ACTILAB

• Phase competition between UC and α -UC₂ as yet missing explanation of performance and durability of this material's microstructure over long time irradiation at very high temperatures

Confirmation of Hindered Grain Growth

For pure diffusion and short half life:

$$l_{l}(T_{1/2}) = \frac{3\left(\sqrt{\pi^{2}\lambda/\mu_{0}}\right) \coth\sqrt{\pi^{2}\lambda/\mu_{0}} - 1}{\pi^{2}\left(\lambda/\mu_{0}\right)}$$
$$= \pi^{2}\frac{D}{r^{2}}$$

R. Kirchner, NIM B, B70, 186-199 (1992)

 \rightarrow r² / D,

 ε_{re}

 μ_0

diffusion constant D(T) from initial particle size measurements: $D(2300 \text{ K}) = 6 \cdot 10^{-11} \text{ cm}^2/\text{s}$

Dismantling Target Unit at PSI

UC_X target unit used for $^{\rm 30}\rm Na$ yields:

- * Opening target vessel in a hot cell chain in air (6 mSv/h on contact with Al beam window)
- * Extraction of tantalum container (19 mSv/h on contact with Ta proton beam window)
- * Sealing of ion source and mass marker outlet with epoxy glue to prevent oxidation of carbide material

Dismantling Target Unit at PSI (2/2)

- Transfer of Ta container with $\mbox{UC}_{\rm X}$ into inert-gas hot cell
- Cutting of sealed container
- Extraction of UC_x for further investigations (500 μ Sv/h on contact with single pellet)
- Pellets appear macroscopically unchanged

UC_x Post-Irradiation Study at PSI **ACTILAB**

Post-irradiation analysis:

- * Pellets appear macroscopically unchanged
- * Microscopic evolution of pore distribution and grain size under irradiation observed
- * Further results of synchrotron investigations under analysis

before irradiation

after irradiation

Electron Probe Micro Analysis at PSI ACTILAB

Preparation (polishing) of samples in nitrogen atmosphere

Non-irradiated reference

Proton beam entrance

From container center

Proton beam exit

- * Extensive EPMA data set still under analysis
- * Confirmation of zones with varying carbon concentration causing UC₂-UC phase competition

Uranium

Composing a Recipe for Nano-Grained UO₂ ACTILAB

Synthesis of de-novo designed uranium carbide matrixes:

Different microstructures, densities, grain sizes, crystal structures

- tested \rightarrow tailor-made matrix:
- Suspension grinding of UO₂ powder to 160 nm average particle size
- * Wet-mixing with multi-walled carbon nanotubes
- * Ultrasound drying of mixture and pressing to 1.6 g/cm³ pellets
- Fast reactive sintering to mixed uranium carbide in carbon nanotube matrix

Microstructure of UC₂-MWCNT nano composite currently under investigation...

Investigation also initiated on La, a kind of chemical analogue of U (Cf. next slide)

LaC₂-MWCNT Nano Composite (After Carbo-Thermal Reduction)

1st On-Line Results

6

- * ¹¹Be: 6. 10^7 ion/µC (gain of one order of magnitude)
- * Record yields for Cs isotopes
- Structure seems preserved over time and temperature (at least >100 h)...

The release experiment at Accélérateur Linéaire et Tandem à Orsay

1st tests: B. Hy et *al.*, Nucl. Instr. Meth. B 288 (2012) 34.

Microstructure and release

Thermal Conductivity & Emissivity

Setup for thermal conductivity measurements

Original setup – INFN/LNL

M. Manzolaro et al., Rev. Sci. Instr. 84 (2013) 054902.

Newly developed setup (Padova)

allowing measurements for samples of smaller sizes (down to \varnothing ~30 mm)

Thermal Conductivity of UC_x

Temperature [°C] measurements vs. numerical data

Inverse analysis gives Thermal conductivity [W/m°C]

Thermal Emissivity of UC_X

exotic beams for science

SPES

pellet	mass (g)	main phase	mass of U (g)	diameter (mm)	thickness (mm)
GATCHINA	1.80	UC	1.71	13.2	1.0
PARRNe894	0.82	UC ₂	0.74	13.0	1.9
OXA	0.61	UC	0.70	7.4	1.9
PARRNeBP	0.87	UC ₂	0.79	12.6	1.5
COMP30	0.68	UC ₂	0.62	8.3	2.5
SPES MM	3.51	UC_2	2.92	28.9	1.4

Final step and Outlook

The goals of ACTILAB project are close to be completed within ENSAR extension:

- * Last measurements requested for the project are about to be completed (post-irradiation analysis, emissivity measurements etc.).
- * A final on-line experiment at ALTO (IPNO) or ISOLDE (CERN).
- * Going toward nano structured porous UC_x ...
- * Articles have been submitted or will be submitted soon.
- * Samples of UCX have been shipped between CERN, INFN, IPNO and PSI. in further details:
- * PIE of nano-UCX + Determination of phase dynamics.
- * Developing the new synthesis procedures, characterization and on-line tests.
- * Target recycling (reprocessing).