ISOL@MYRRHA within the EURISOL-DF Context

Lucia Popescu (SCK•CEN)

ISOL@MYRRHA - Concept

Protons: 2-4 mA, CW

- Driver-beam power on ISOL@MYRRHA target: 60-120 kW
- Low-energy RIBs
- Experimental programme complementary to other ISOL facilities long-run experiments

L. Popescu (SCK•CEN)

Copyright © 2014 SCK•CEN

ISOL@MYRRHA Applications

ISOL@MYRRHA will prioritize Atomic QED tests in HCI experimental programmes which **Physics** Bohr-Weisskopf: A- and g-factors require of extended beam times with Ultra-high selectivity: LIST configuration Nuclear Rare decays: GTGR, β_{xn/yp}, cluster decay, SHE **Physics** stable operation: Extreme precision: e.g., crystal spectron etry C²S) Astrohunt for very rare phenomena physics Fundame Correlations (*β*-*v*, ...), EDM: Statistics need high statistics Interactic control systematic effects of setup need many time-consuming Condens Systematic sample measurements Matter systematic measurements have inherent limited detection Biology Systematic sample measurements atic production of Radiopharmaceuticals Medical Applicati Dedicated radiotherapy center efficiency Typic Time, Month Year

ISOL@MYRRHA Project

BriX

- ISOL@MYRRHA Feasibility Study carried out within BriX-IAP6 (2007-2012)
- Technical & Scientific report submitted to NuPECC
 - → 2010 Technical Design of ISOL@MYRRHA in the NuPECC Irp
- Detailing the Design, updating the Scientific Case and building the Users Group through a series of topical workshops BriX-IAP7 (2012-2017)

MYRRHA included in the new Belgian Government Agreement (10 October 2014)

Belgian EURISOL Consortium

Created in 2013

- > Aim:
 - Coordinated RTD programme ISOL developments
 - Joining EURISOL collaboration (MOU signed in July 2014)

- Chair: R. Raabe (KU Leuven)
- Vice-Chair: P. Planquart (VKI)

Potential Contribution of ISOL@MYRRHA to EURISOL-DF

High power direct targets development

Highest proton-beam power on an ISOL target today: 50 kW at TRIUMF-ISAC facility

Limited by thermal conductivity of target materials
ISOL@MYRRHA will run at 60-120 kW => new target design is needed

High power direct targets development

• Solid targets for ISOL@MYRRHA:

- > Targets based on ISAC design
 - refractory metal foils (e.g., Ta, Nb, Ti)
 - carbide powders sintered on a graphite sheet (e.g., ZrC/C, SiC/C)
 - UCx/C targets fully exploited at ISOL@MYRRHA

The concept for the EURISOL 100-kW solid target to be further developed

High power direct targets development

- Loop-type targets for ISOL@MYRRHA
- Molten-metal targets E.g. LIEBE: Pb-Bi loop

Powder targets

The two new concepts allow further increase of beam power on target

L. Popescu (SCK•CEN)

RIB production at ISOL@MYRRHA

- Based on the concept at TRIUMF-ISAC
- New features:
- vacuum connection at beam level
- radiation resistant remote vacuum connection /disconnection for target exchange
- vacuum-tight target box
- reliable remote services connection and disconnection
- remote maintenance, repair and exchange of the various components

Target handling (concept similar to MYRRHA)

L. Popescu (SCK•CEN)

Contribution of ISOL@MYRRHA to EURISOL-DF - summary

- High power direct targets development:
 - Solid targets based on TRIUMF-ISAC design
 - Molten-metal targets
 - Powder targets
- Target-station design and operation procedure (shielding, remote handling, maintenance, waste handling and disposal, etc.)
- + Complementary physics programme