

Preparation of mono-isotopic beams: Isobar purification via HRS

Teresa Kurtukian-Nieto

CNRS/IN2P3-Université de Bordeaux

EURISOL-NET Town Meeting, Orsay-France, October 30th – 31st 2014

Why a High Resolution Separator?

• The production of the most exotic isotopes generally accompanied with a high contamination by the less exotic isobars of longer half-lives.

Powerful selection methods are mandatory

Teresa Kurtukian-Nieto

Why a High Resolution Separator?

Teresa Kurtukian-Nieto

Why a High Resolution Magnetic Separator?

The important criteria are :

the selectivity: the capability to separate the ions of interest from contaminants
the efficiency: keep the maximum of the ions of interest

the rapidity: the time needed to separate the ions of interest from contaminants

Performance of a Magnetic Separator

It means that neighboring beams at mass 100 (± 1 mass unit) are thus separated by 22.5mm at ISACI and by 10mm at GPS, but hardly isobars

Teresa Kurtukian-Nieto

Separator	Configuration	(x∣δ) (cm/%)
EURISOL-HRS	4 Dipoles 135° ρ=1.0 m	8
EXCYT-HRMS	2 Dipoles 90° ρ=2.6 m	10.4
ISOLDE- HRS	1 D 90° ρ=1.0 m 1 D 60° ρ=1.0 m	4

Teresa Kurtukian-Nieto

R can be increased if accepted phase space is reduced \rightarrow reduced particle intensity.

 \bullet In order to get simultaneously a large R and a high particle intensity, it is necessary to have a large F₀ and small ρ_0

Teresa Kurtukian-Nieto

$ \begin{array}{c} \downarrow \\ 2x_{00} \\ Q = R2x_{00}2a \end{array} $	$F_{OO} = \frac{F_O}{\rho_O}$	B	θ
Separator	Configuration	(x δ) (cm/%)	
SPES-HRMS	2 Dipoles 80° ρ=1.5 m	60	<u></u>
ANL/CARIBU- HRS	2 Dipoles 60° ρ=0.5 m	20	
SPIRAL2-DESIR	2 Dipoles 90° ρ=0.85 m	31	
TRIUMF-ISACIII- HRS	2 Dipoles 90° ρ=0.85 m	1.6	

Separator	Configuration	Shape	(x∣δ) (cm/%)
SPES-HRMS	2 Dipoles 80°/90° ρ=1.5 m	С	60
SPIRAL2-RISP	2 Dipoles 90° ρ=0.85 m	С	31
CARIBU-HRS	2 Dipoles 60° ρ=0.5 m	С	20
EXCYT-HRMS	2 Dipoles 90° ρ=2.6 m	S	10.4
EURISOL-HRS	4 Dipoles 135° ρ=1.0 m	S	8
ISOLDE- HRS	1 D 90° ρ=1.0 m 1 D 60° ρ=1.0 m	S	4
TRIUMF-ISACIII-HRS	2 Dipoles 90° ρ=0.85 m	С	1.6

Separator	Configuration	(x δ) (m)	Slits ∆x ₀₀ (mm)	R
EURISOL-HRS	4 D 135° ρ=1.0 m	8	0.0625	64000
SPES-HRMS	2 D 80° ρ=1.5 m	60	0.5	60000
CARIBU-HRS	2 D 60° ρ=0.5 m	20	0.5	20000
SPIRAL2-RISP	2 D 90° ρ=0.85 m	31	0.5	31000
TRIUMF- ISACIII-HRS	2 D 90° ρ=0.85 m	1.6	0.05	16000
EXCYT-HRMS	2 D 90° ρ=2.6 m	10.4	0.2	25000
ISOLDE- HRS	1 D 90° ρ=1.0 m 1 D 60° ρ=1.0 m	4	0.1	20000

$$R = \frac{(x \mid \delta)}{2x_{00}(x \mid x)}$$

Separator	Configuration	(x δ) (m)	Slits ∆x0 (mm)	R ¹	R ²
EURISOL-HRS	4 D 135° ρ=1.0 m	8	0.06	57000	20000
ISOLDE- HRS	1 D 90° ρ=1.0 m 1 D 60° ρ=1.0 m	4	0.1	19000	12000
EXCYT-HRMS	2 D 90° ρ=2.6 m	10.4	0.2	25000	14000
SPES-HRMS	2 D 80° ρ=1.5 m	60	0.5	54000	20000
SPIRAL2-RISP	2 D 90° ρ=0.85 m	31	0.5	29000	15000
CARIBU-HRS	2 D 60° ρ=0.5 m	20	0.5	19000	12000
TRIUMF- ISACIII-HRS	2 D 90° ρ=0.85 m	1.6	0.05	15500	10000
				(x)	Sm)

 $R^1 \Delta E_0 / E_0 = \pm 1 \times 10^{-6}$ $R^2 \Delta E_0 / E_0 = \pm 1.67 \times 10^{-5}$ (1 eV/60keV)

 $\frac{1}{2x_{00}(x \mid x) + 2(x \mid \delta E)}$ ΔE

Teresa Kurtukian-Nieto

Separator	Configuration	(x δ) (m)	R ¹
EURISOL-HRS	4 D 135° ρ=1.0 m	8	4400
ISOLDE- HRS	1 D 90° ρ=1.0 m 1 D 60° ρ=1.0 m	4	2800
EXCYT-HRMS	2 D 90° ρ=2.6 m	10.4	5000
SPES-HRMS	2 D 80° ρ=1.5 m	60	8500
SPIRAL2-RISP	2 D 90° ρ=0.85 m	31	7500
CARIBU-HRS	2 D 60° ρ=0.5 m	20	6700
TRIUMF- ISACIII-HRS	2 D 90° ρ=0.85 m	1.6	1300

 $\mathbb{R}^{1} \Delta X_{0} = 0.5mm, \Delta E_{0}/E_{0} = \pm 5 \times 10^{-5}$ (3eV/60 keV)

High resolution separation requires cold beams

Teresa Kurtukian-Nieto

EURISOL-HRS

Town Meeting

(T. Giles, CERN)

EURISOL-HRS

A schematic diagram of the envisaged EURISOL facility.

CARIBU/SPIRAL2/SPES/RISP-HRS

SPIRAL2/DESIR-HRS

SPIRAL2/DESIR-HRS

 $R \sim 31000$

Teresa Kurtukian-Nieto

EURISOL-NET Town Meeting, 30-31 October 2014

0.41

SPIRAL2/DESIR-HRS

High order aberrations corrected up to 5^{th} order allows to obtain a Resolution of ~30000

Teresa Kurtukian-Nieto

TRIUMF/ISAC3-HRS

Teresa Kurtukian-Nieto

Examples of physics cases

Mass spectra calculated, for A=132 and A = 100 isobares, setting on 132 Sn and 100 Kr.

Aberrations

- Field inhomogeneity
- Mechanical defects and positioning precision
- Beam quality:
 - Beam emittance
 - Energy dispersion

High order aberrations

Teresa Kurtukian-Nieto

Dipoles: 2nd order correction

Teresa Kurtukian-Nieto

Field Homogeneity in Dipole Magnets

Teresa Kurtukian-Nieto

Positioning precision

Beam Emittance and Energy dispersion

¹⁰⁰Kr :

Teresa Kurtukian-Nieto

EURISUL-NET TOWN weeting, 30-31 October 2014

Final remarks

High resolution magnetic separators are fast (no half-life limitation), high transmission (close to 100%) and able to handle high intensity beams (no charge space problem).

The choice of the technical solution is a compromise between mass dispersion and accepted phase space.

C-shape separator is more compact than S-shape (reduce costs)

Less optics in the beam line make the system more easy to tune (very important for experiments!!) but high order aberrations are a critical point.
 Enough commissioning time is important.

The "working high resolution" of a separator is an engineering problem:

- Magnetic field homogeneity
- Mechanical defects
- Positioning precision

High quality beams (cold beams) is required in order to get R>15000

Thank you