

ELI-NP: Nuclear Science and applications with the next generation of High Power Laser and Gamma beams: Project Status and Roadmap

The world's first international laser Research Infrastructure Pan–European distributed research infrastructure based initially on 3 facilities in CZ, HU and RO

ELI-Beamlines, Prague, CZ

High–Energy Beam Facility development and application of ultra–short pulses of high–energy particles and radiation

ELI-ALPS, Szeged, HU

Attosecond Laser Science Facility new regimes of time resolution

ELI-NP, Magurele, RO

Nuclear Physics Facility with ultra–intense laser and brilliant gamma beams (up to 20 MeV) novel photonuclear studies

Nuclear PhysicsExtreme Light Infrastructure
A world laser roadmap

Gerard Mourou 1985: Chirped Pulse Amplification (CPA)

Taken from P.Martin

ELI Nuclear Physics in Romania

Structural Funds approved in Sept. 2012 Start construction June 2013

Projected completion date: spring 2018-Fully operation facility +1-2 years

Building under construction (Completed June 2015)

staff hiring in progress ($\sim 60 \rightarrow > 240$)

Major equipment: two 10PW lasers under construction

Gamma Beam System under construction

293 Meuro 83% EC , 17% Romania

S.Gales-ECOS-Town meeting -Orsay -Oct-27-29-2014

Budget break-down 2012 – 2017:			
66 M€			
34 M€			
169 M€			
24 M€			
293 M€			

Nuclear Physics

ELI-NP

Observation of matter with new powerful probes Two machines of extreme performances Large discovery potential

Two 10 PW lasers, 10²³ w/cm²

Extreme E-M fields

 $0,2-19 \text{ MeV}, 10^{11} \text{ y/s}, 0,3\% \text{ BW}$

BUCHAREST

ring rail/road

Bucharest-Magurele Physics Campus National Physics Institutes

NUCLEAR Tandem acc.s Cyclotrons γ – Irradiator Adv. Detectors Life & Env. Radioisotopes

Reactor

(decomm.)

Waste Proc.

e © 2009 DigitalGlol

"Horia Hulubei" National Institute for Physics and Nuclear Engineering

Lasers Plasma Optoelectronics Material Physics Theoretical Physics Particle Physics

S.Gales-ECOS-Town meeting -Orsay -Oct-27-29-2014

Google

ELI-NP

ELI-NP Milestones – Facility Construction

Buildings – one contractor, 33000 m² total

Experimental area building

Ready by June 2015

1st October 2014

ELI–NP Nuclear Physics Research

- Nuclear Structure
 - **Nuclear Photonics (NRF)**
 - Photo-disintegration, Photo-fission & Exotic Nuclei Nuclear Astrophysics
 - Complementary to other ESFRI Large Scale Physics Facilities (FAIR, SPIRAL2)
 - Laser–Target interaction characteristics : NP diagnostics Laser Ion driven nuclear physics : fission–fusion Laser – Extreme E-M Fields–Acceleration – Beyond QED
- Applications based on high intensity laser and very brilliant γ beams complementary to the other ELI pillars
- ELI–NP in Romania selected by the most important science committees in Europe – ESFRI and NuPECC, in the 'Nuclear Physics Long Range Plan in Europe' as a major facility

ELI–NP Scientific Coordination

7. Applications

9

ELI–NP Scientific Coordination

TDR's Workshops June 2013& April 2014

The workshop "Towards Technical Design Reports (TDR) of experiments with intense laser beams at ELI-NP" was held in Bucharest-Magurele, on June June 27th - 28th, adjacent to a workshop "Towards Technical Design Reports (TDR) of experiments with brilliant gamma-ray beams at ELI-NP" held at the same location on June 25th - 26th, 2013.

Next ELI–NP International Workshop

• "ELI-NP Science Program and Instruments"

Technical Design Reports-*February 18 – 20, 2015*

External reviews March-May 2015 International Scientific Advisory Board (20 members) 2nd Trimester of 2015

ANR proposals FR-RO dedicated to ELI-NP (18/11/2014)

ELI–NP Experiment Building

ELI–NP HPLS

Interaction of High Power Laser with Matter will suffer this :

Electrons are expelled from the target due to the chock wave induced by the powerful laser .Heavy ions are accelerated in the field created by the electrons

of 10⁹)

Accelerations of Electrons and Ions

Electrons and ions accelerated at solid state densities 10^{24} e cm⁻³ never reached before (Classical beam densities 10^{8} e cm⁻³) on very short distance (µm-mm) $E \sim I_{laser}$

Energy reached equal to a 400m up-to-date accelerator (up to GeV reduction of scale

From MeV to GeV 1000 Maximum proton energy (MeV) experiments 150 fs simulations Janusp 10 LOA Toky Tokyo п Yokoham 0.1 10¹⁹ 10²⁰ 10¹⁶ 1017 10¹⁸ (W.cm

LASER DRIVEN NUCLEAR PHYSICS EXPTS: Nuclear Astrophysics

1. <u>Circular polarized Laser beam</u> incident on production target produces a beam of ²³²Th, ¹²C and ²D ions through the Radiation Pressure Acceleration.

2 Fission reactions: a) ²³²Th interacts with ¹²C (or ¹H) in the 1st layer and b) ¹²C and ²D nuclei interacts with ²³²Th in the 2nd layer of reaction target. One light and another heavy fragments are produced: ²³²Th + (¹²C, ¹H) -> $X_L + X_H$ ¹²C (or ²D) + ²³²Th \rightarrow $Y_L + Y_D$ 3 Fusion:Two light fission fragments (X_L, Y_L) fuse in the

reaction target. Neutron rich nuclei (close to N=126) are produced.

fission-fusion reactions. n-rich nuclei around N = 126 Z=66,70 waiting point

Study of heavy ions acceleration mechanism at laser intensities > 10²³ W/cm²

- > Deceleration of very dense electron and ion beams
- > Understanding influence of screening effect on stellar reaction rates using laser plasma
- Nuclear techniques for characterization of laser-induced radiations

The Gamma Beam System (GBS)

Laser Compton Back-scattering (LCB)

the most efficient frequency amplifier

'Photon accelerator'

Maximum upshift

Nuclear Physics

head–on collision (θ_L =0) & backscattering (θ_{γ} =0) $E_{\gamma} \sim 4\gamma_e^2 \times E_L$

Electron Linac

Laser-Photo cathode

e- injection

γBeam

Collisions e-photons

Yag Laser

E_L ~ 2.4 eV (green)

 $E_{\rm e}$ ~ 300 MeV

 $E_{\rm e}$ ~ 720 MeV

 E_{γ} < 3.5 MeV

 E_{γ} < 20 MeV

The GBS of ELI–NP

Provider – EuroGammaS Association

Academic Institutions Sapienza University (Italy), INFN (Italy), CNRS (France), IN2P3 (France) Industrial Partners

ACP (Amplitue Group, France), Alsyom (Alcen Group, France), Comeb (Italy), ScandiNova Systems (Sweden)

and several Sub-Contractors:

Alba (Spain), Cosylab (Slovenia), Danfysik (Denmark), IT (Slovenia), M+W Group (Italy), Menlo Systems (Germany), RI (Germany)

The Challenges :

- design the most advanced Compton Gamma Beam Source based on state-of-the-art components
- combining electron accelerator physics with a photon-electron collider

ELI–NP Gamma Beam Source: Bright, Monochromatic (≈0.5%), High Spectral Flux (~10⁴ ph/s·eV), Tunable (0.2–19.5 MeV), Polarized (≈99%)

GBS – Beam Specifications

Energy (MeV)	0.2 – 19.5
Spectral Density (ph/s·eV)	$0.8 - 4.10^4$
Bandwidth rms (%)	≤ 0.5
# photons per shot within FWHM bdw.	≤ 2.6·10 ⁵
# photons/sec within FWHM bdw.	≤ 8.3·10 ⁸
Source rms size (µm)	10 – 30
Source rms divergence (µrad)	25 – 200
Peak brilliance (N _{ph} /sec·mm ² ·mrad ² ·0.1%)	10 ²⁰ – 10 ²³
Radiation pulse length rms (ps)	0.7 – 1.5
Linear polarization (%)	> 99
Macro rep. rate (Hz)	100
# pulses per macropulse	32
Pulse-to-pulse separation (nsec)	16

Low–energy stage: Eγ < 3.5 MeV March 2017						
High–energy stag Sep	je: Eγ < 19.5 otember 201					
S-Band photoinjector diagnostics 12 C-Band structures Booster	Low energy IP E _{beam} =300MeV E _{gamma} =3.5MeV	Low energy IP E _{beam} =720MeV E _{gamma} =19.5MeV High Energy diagnostics				

NRF Physics cases @ ELI-NP Physics above the neutron threshold Nuclear Astrophysics

Nuclear structure

- Modes of excitation below the GDR ,Scissor modes, Parity Violation, M1
- Decay of PDR ,GDR ,
- Impact on nucleosynthesis
- Gamow window for photo–induced reactions in explosive stellar events p process(γ,n) (γ,π), (γ,α) rections

Understanding exotic nuclei

• E1 strength will be shifted to lower energies in neutron rich system

γ ^>> 🟀

ELI–NP NRF Working group ELI-NP above Threshold WG ELI-NP Charged Particles WG

S.Gales-ECOS-Town meeting -Orsay₂₀ -Oct-27-29-2014

Instruments

Astrophysics – related studies

- Production of heavy elements in the Universe
- -a central question for Astrophysics
- Neutron Capture Cross Section of s-Process Branch

Nuclei with Inverse Reactions (γ, n)

Measurements of (γ, p) and (γ, α) Reaction Cross Sections for p –Process-Nucleosynthesis :

Key reaction $\gamma + {}^{16}O \rightarrow {}^{12}C + \alpha$

Determination of the reaction rates by an absolute cross section measurement is possible using mono-energetic photon beams produced at ELI-N

Tremendous advance to measure these rates directly- very high intense γ beam needed

Potential Nuclear Photonics Applications

Perspectives

 a new research facility, open to the European and International community is being under construction at Bucharest with state of art instruments 2X10 PW HPLS and 0.2-19 MV brilliant ,monochromatic GBS

- Research opportunities
 - nuclear astrophysics
 - Nuclear physics
 - Nuclear photonics
 - HP laser driven nuclear physics
 - strong field QED
 - Large Spectrum of Applications

we are open for collaboration

young researchers are invited to join the fun!

ELI-NP Core Team

Board of Directors

N.V. Zamfir ,G. Cata–Danil,S. Gales,C. Ivan, A.Popescu, R. Stoicea, I.I. Ursu

Research Activities Assistant G.I. Apetrei

Gamma BeamC.A.Ur (GBS)D. BalabanskiO. TesileanuO. TesileanuD. FilipescuA.OprisaN. IvanovV.LecaK.SatoP.Constantin	High PowerLasersD.Urcescu (Expts)R. DabuF. DabuF. NegoitaE. TurcuI. DancusS. BalascutaL. NeaguT. AsaveiG.G Acbas	Engineering M. Toma <u>C. Petcu</u> M. Risca M. Cernaianu B. De Boisdeffre B. Tatulea M. Tataru M. Conde D. Popa	Radioprotection, EMP M. Gugiu, I.Mitu S. Bercea, H.Stancu D.Aranghel, E. Iliescu + IFIN-HH + International TDR's working groups
G.Sullivan V. Iancu	M.Bobeica <u>I.Morjan (HPLS)</u>	V.Buznea C.Paun	
	μ	I. Garagaianu	26

Lifeti Luclear Physics Extreme Light Infrastructure Nuclear Physics Www.eli-np.ro

Thank you for your patience

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

Nuclear Physics ELI–NP Project Timeline

ELI-NP Academic Forum

International Collaborations

MoU's signed with the following entities (May 2014)

Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland ↔
IFIN-HH/ELI-NP [website]
Responsible: Dr. Daniel Ursescu

Research Cluster "Matter and Radiation Science" Technische Universität Darmstadt, Germany ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Calin A. Ur

Institute of Laser Physics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Razvan Dabu

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Ovidiu Tesileanu

Institute for Nuclear Research of the Hungarian Academy of Sciences (MTA-Atomki) ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Dimiter Balabanski

Konan University, Kobe, Japan ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Dan Mihai Filipescu

University of Connecticut, USA ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Ovidiu Tesileanu

Institute of Nuclear Physics, University of Cologne, Germany \leftrightarrow IFIN-HH/ELI-NP [website] Responsible: Dr. Calin A. Ur

 $\begin{array}{l} \textbf{University of California - Irvine, USA} \leftrightarrow \textbf{IFIN-HH/ELI-NP} \ [\underline{website}] \\ \\ Responsible: \ Dr. \ Nicolae \ Zamfir \end{array}$

INFN LNS Catania, Italy ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Nicolae Zamfir Triangle Universities Nuclear Laboratory, Durham, NC, USA ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Sydney Gales

 $\label{eq:Friedrich Schiller University, Jena, Germany \leftrightarrow IFIN-HH/ELI-NP $$ [website] $$ Responsible: Dr. Daniel Ursescu$

"II. Physikalisches Institut" of Justus-Liebig University, Gießen, Germany ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Sydney Gales

Institut de Physique Nucléaire, Orsay, France ↔ IFIN-HH/ELI-NP
[website]
Responsible: Dr. Sydney Gales

Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Russia ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Dan Filipescu

Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Poland ↔ IFIN-HH/ELI-NP [website] Responsible: Dr. Ovidiu Tesileanu

The University of Strathclyde, Glasgow, UK ↔ IFIN-HH/ELI-NP
[website]
Responsible: Dr. Edmond Turcu

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ↔ IFIN-HH/ELI-NP [website]

Responsible: Dr. Sydney Gales

S.Gales-ECOS-Town meeting -Orsay -Oct-27-29-2014

SCAPA

SIOM

PHELIX - GSI Germany

Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea

Name	Country	#Beams	10 ¹⁵ W
SCAPA	UK	3	< 0.3
UHI 100	France	1	0.1
ELPHIE	France	3	< 0.1
ALLS	Canada	1	0.2
PHELIX	Germany	2	0.5
Texas	USA	1	1
SIOM	China	1	> 1
GIST	S. Korea	2	>1
PETAL	France	1	> 1
LFEX	Japan	4	1
ELI-NP	Romania	2	10
ELI-Beams	Czech	5	10
XCELS	Russia	12	15

Table 1: A sample of the laser installations associated with the IZEST partnership.

Laser acceleration Exciting Perspectives

Enormous reduction in scale

Applications of NRF To Nuclear Materials

29-2014

Human Resources

competencies:

٠

٠

•

HPLS - Applications

Materials in Extreme Environments for Energy, Accelerators and Space

Collimators

LHC

SPS

Primary halo (p)

materials for fusion reactors

 testing of new materials for accelerator components

high power targets: for RIB production, spa

new materials are needed for accelerato **360 MJ proton[®]beam** collimator jaws for the upgrade of the LHC

- testing materials for space science (electronics components,
- hypervelocity impacts)
 - the radiation environment used for ground testing should ide the natural environment probed by the satellite
- biological science research (effects on bio-molecules, cells)
- testing radiation hardness and developments of detectors
- irradiated optical components testing

GBS – Photonuclear Reactions

Nuclear Resonance Fluorescence (NRF) Photoactivation Photodisintegration (-activation) Photo-fission

S.Gales-ECOS-Town meeting -Orsay -Oct-27-29-2014

N. Pietralla 36

Location of the IGISOL gas catcher

IGISOL Cell

<u>Laser driven Fusion-Fission</u> <u>Experimental layout</u>

NRF – Applications

Non-destructive computerized tomography of objects

electrode of the TH571A tetrode tube

CT setup @ AIST, Tsukaba, Japan

- 10 MeV LCB gamma-ray beam
- off–line reconstruction of the object image with the filtered–back–projection method
- less prone to artifacts due to radiation hardening
- need of high intensity to reduce scanning time

H. Toyokawa, NIM 545, 469 (2005)

Strong field QED physics...

Require electrons with a large Lorentz factor (γ) interacting with strong electromagnetic fields.

Ultra-intense lasers should be able to provide both the Lorentz factor and the fields

 (1) Interaction of GeV electron beam (Wakefield) with TW-PW laser

ELI-NP Delivering 20fs pulse at > 10²³ W/cm² will enable pairs this exciting new regime to be investigated

(2) >10PW laser pulse interactions with dense plasma Reaction rates are high due to high electron density 10PW=10²³ Wcm⁻² $\rightarrow \gamma$ =300 $\rightarrow \eta \approx$ 0.2

A.R. Bell & J.G. Kirk, Phys Rev Lett, 101, 200403 (2008)

Electron beam

40

Laser pulse

Radioisotopes for medical use

• New approaches and methods for producing radioisotopes urgently needed

Nuclear Physics

- •Mo-99 and other medical isotopes used globally
- for diagnostic medical imaging and radiotherapy
- ^{195m}Pt: In chemotherapy of tumors it can be used to exclude "non responding" patients from unnecessary chemotherapy and optimizing the dose of all chemotherapy

ALTO, ARIEL, etc.

Laser Recirculation at IP

POWER : 10 PW = 10¹⁶ W

1 Million Billions light bulbs!

10 Millions !

DURATION : 50 fs = 50×10^{-15} s

1 Thousandth Billionth blink eyes !

