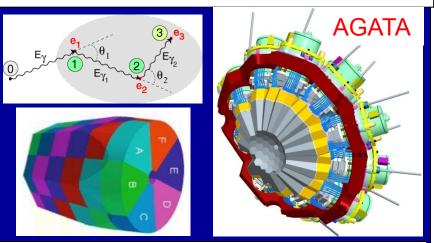
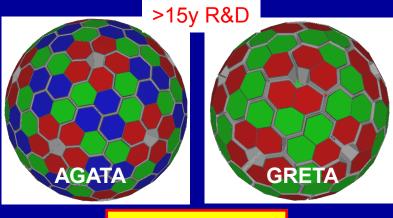
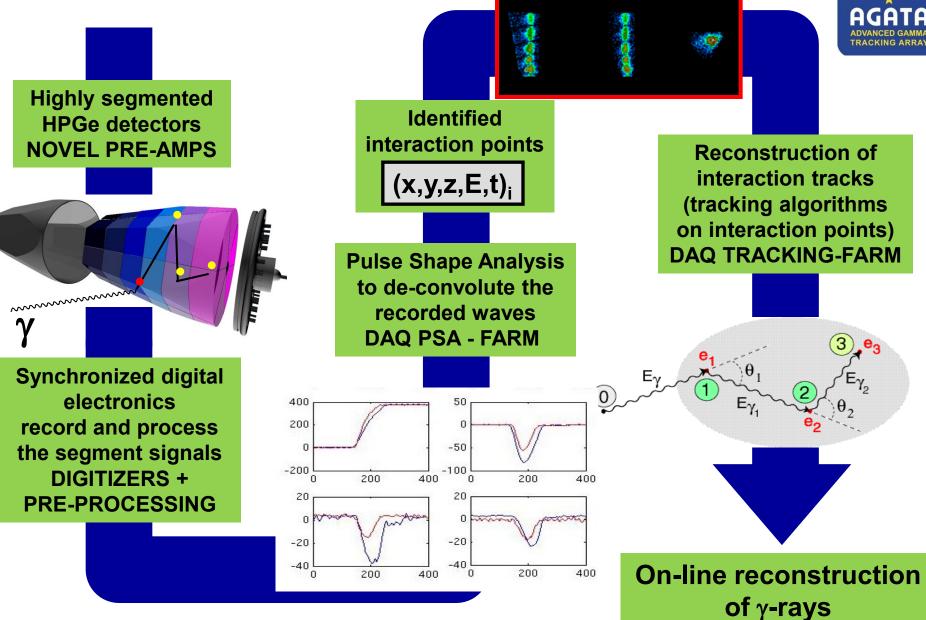


AGATA: Status and Future Plans; AGATA in an ECOS facility A. Gadea (IFIC, Valencia)

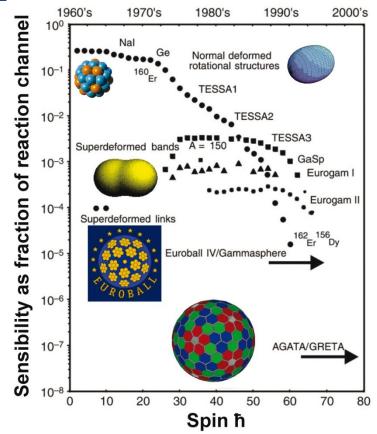

ECOS-EURISOL Joint Town Meeting- IPN Orsay, France October 28-31, 2014


HR γ-Spectroscopy Instrumentation for Nuclear Structure

Tracking Arrays based on Position Sensitive Ge Detectors

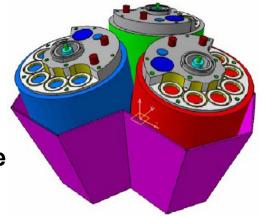

Two Tracking Arrays projects: GRETA (USA) & AGATA (EU)

 $\epsilon \sim 40 - 20 \%$ (M_y=1 – M_y=30)


Concept of *γ***-Tracking**

AGATA

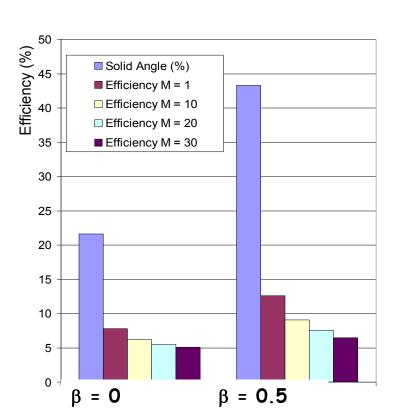
(Advanced GAmma Tracking Array)



180 hexagonal crystals:3 shapes3 fold clusters (cold FET):60 all equalInner radius (Ge):23.5 cmAmount of germanium:362 kgSolid angle coverage:82 %36-fold segmentation6480 segmentsCrystal singles rate~50 kHzEfficiency (M γ =1 [30]):43% [28%]Peak/Total (M γ =1 [30]):58% [49%]

6660 high-resolution digital electronics channels

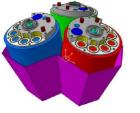
High throughput DAQ


Pulse Shape Analysis \rightarrow position sensitive operation mode γ -ray tracking algorithms \rightarrow maximum efficiency and P/T

The AGATA 1 π Objective of phase 1: 2009-2015

- Present phase of AGATA, MoU ongoing
- Phase 1 (>1 π) \rightarrow >45 crystals
- Triple and Double clusters
- The first "real" tracking array

AGATA 1π


To be used at RIB and High Intensity Stable beam facilities (FAIR-HISPEC, GANIL, SPIRAL2, SPES ...

Coupled to spectrometers, beam tracker, LCP arrays ...

The first implementation of AGATA (15 Capsules) installed at LNL in 2010 coupled to PRISMA and HELENA, DANTE, TRACE

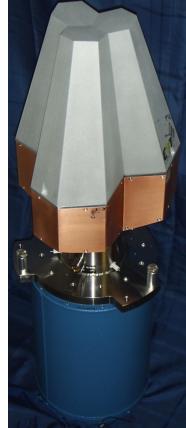
AGATA Early Phase 1 (up to 23 Capsules) installed at GSI in 2012 coupled to FRS & PRESPEC

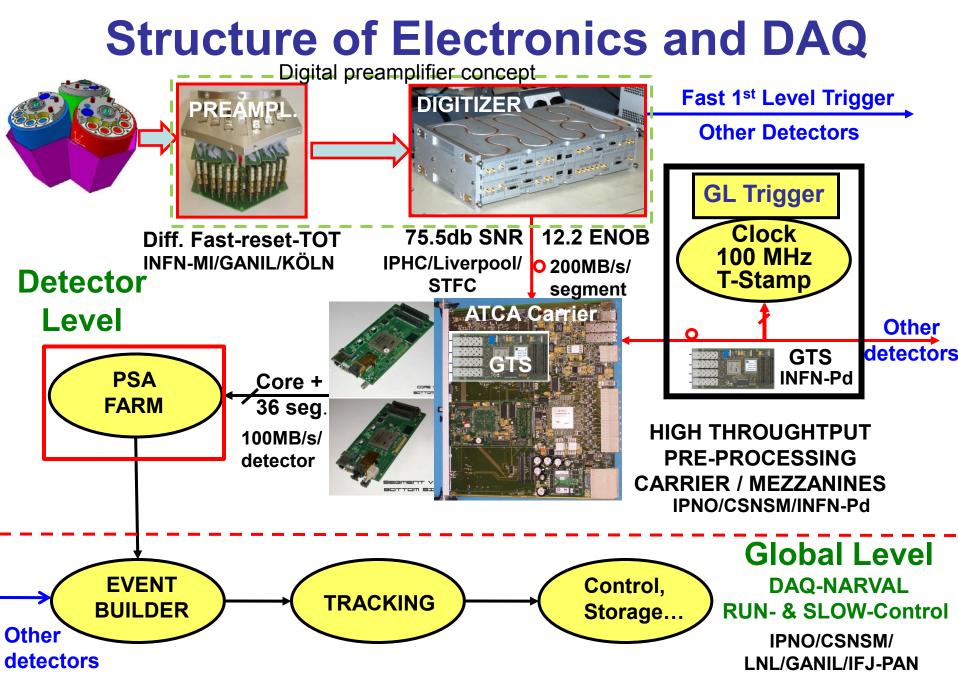
AGATA Phase 1 (up to 39 Capsules) installed at GANIL. Commissioning in 2014. Coupled with VAMOS, EXOGAM2, PARIS, NEDA, DIAMANT, MUST2

AGATA Detectors Summary

34 detectors delivered: 9 "A" + 13 "B" + 12 "C" 4 Detectors with failures: 1 "A" + 1 "B" + 2 "C"

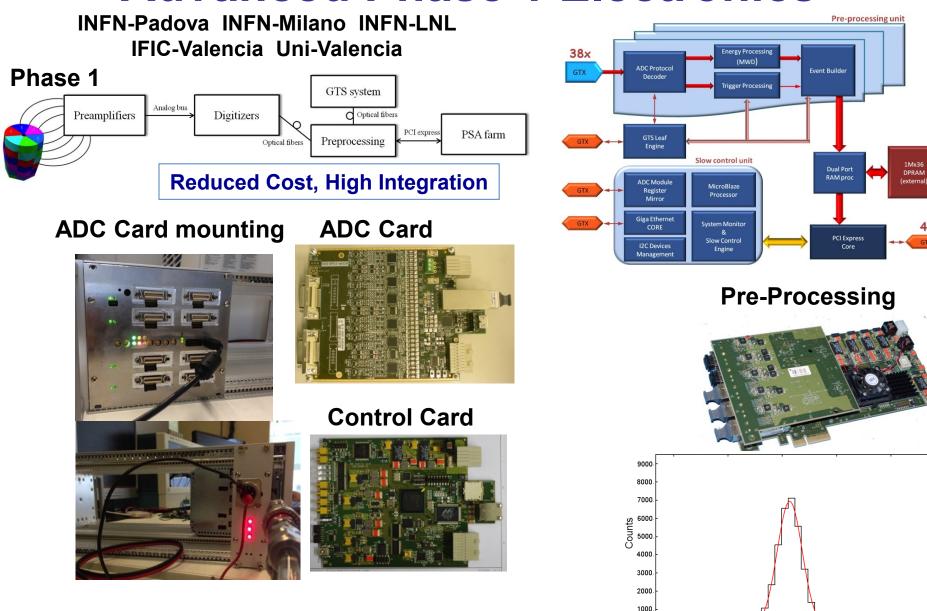
- 1 Detector under CAT
- 2 "C" + 2 "A" + 1 "B" ordered to be delivered in 2014, 2015 and 2016


8 Triple + 3 Double Cluster Cryostats Delivered 3 Triples to be delivered: 2 in 2014 + 1 in 2015 With the number of available capsules possibly: 8 AGATA Triple Clusters


2 (3) AGATA Double Clusters Aim: 30 Crystals in AGATA within 2015.

Work on improving reliability of detectors ongoing: feedthroughs, PA etc...

Detector Module Working Group: IKP-Köln, Uni. Liverpool, IRFU-Saclay, INFN-LNL



interface to GTS, merge time-stamped data into event builder, prompt local trigger from digitisers

Advanced Phase 1 Electronics

1324

1328

1332

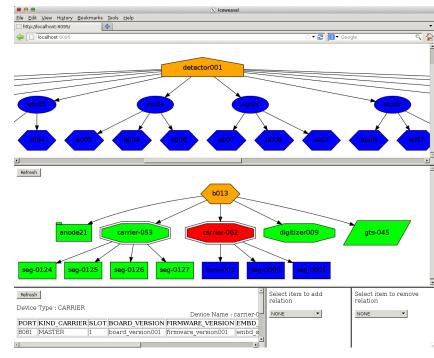
Energy (keV)

1336

1340

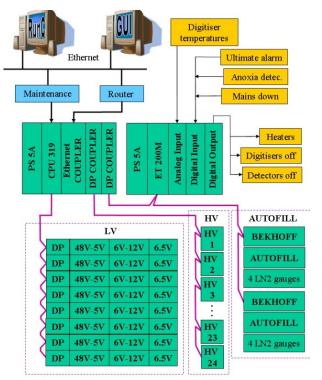
Further studies ongoing on higher processing capability and the Digital Pre-Amplifier concept for future phases.

Phase 1 AGATA Data Flow NARVAL at GANIL


- •Presently all the Data Flow items are fully installed at GANIL.
- •Preparation for the GANIL phase ongoing. The GANIL Narval's version (1.14.3) has been debugged and is available in a repository

•Right now working on event builder and on-line analysis actors

The current GANIL RCC (Run Control Core) has adapted to AGATA


RCC and Topology Manager connected The GUI is operational and from now we can click on start-stop-pause button to launch Narval

Topology Manager has been reworked. The final goal of the GEC/Topology Manager is to centralize the control and setup for AGATA into a simple user friendly system. The package has been installed and tested at GANIL.

IPN-Orsay, CSNSM-Orsay, GANIL, INFN-LNL,GANIL, IFJ-PAN-Crakow, IPN-Lyon

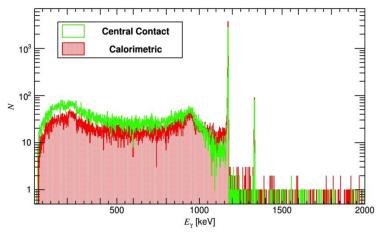
Infrastructure: Detector Support System

AXIS LVPS: Now all are mounted at GANIL and ready
Patch boxes: the full prototype (LV filter, LN2 card, BSD card and 2 PT100 readings) has been tested on ATC5 by Cologne. Not introducing noise in the system. 9 patch boxes being prepared

•*HV System R&D:* Tests being done on commercial HV CAEN and ISEG.

Autofill system: Installation and full commissioning completed by Saclay team and T. Haberman in GANIL on week 36, after LN2 pipes and manifold have been installed and connected and 3rd group PBC+VCC has been adjusted. IKP-Cologne will produce the bayonets/LN2 filling adapters for the GANIL campaign

•GANIL EMC: Primary EMC measurements @ GANIL on platform and mechanical infrastructure. Next will be made when the detectors are mounted. Present results are excellent.


Construction DataBase: huge help tracking material during transfer to GANIL.

CEA Saclay, GSI, STFC-Daresbury, JYFL-Jyvaskyla, IPHC-Strasbourg, GANIL, INFN-LNL, INFN-Padova, INFN-Milano

Simulations, Experimental Commissioning and Performance

Preliminary Results

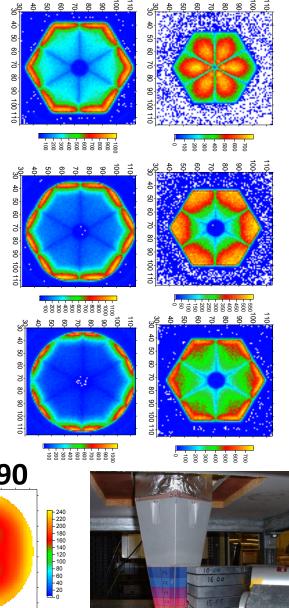
- Focus on ⁶⁰Co data
- Euroball detector counts total number of triggers
- Gate on 1.33 MeV-line
- PSA and tracking performed [3]

Efficiency obtained using different approaches

Experiment						
Input	Efficiency*[%]	Peak To Total [%]				
Central Contact	2,3	18,2				
Calorimetric	3,3	31,7				
Add-Back	3,1	30,4				
Tracked	2,5	34,4				
Simulation						
Input	Efficiency [%]	PeakToTotal [%]				
Central Contact	2,6	on going				
Calorimetric	3,9	on going				

*Efficiency values assuming isotropic angular distribution. Estimated angular correlation effects are 7% in average (to be taken into account and accurately determined by means of Geant 4 simulations)

AGATA PSA & Detector Characterization

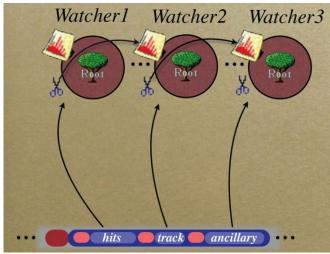

Pulse Shape Analysis: Two PSA codes are available. •*Adaptive Grid Search algorithm*: There are no major changes to AGS algorithm. The biggest impact came from having the system response properly calibrated for energy and position. New PSA basis updates were provided to ensure this.

• *The Particle Swarm algorithm* was implemented in test form for single interactions. The present implementation can handle a single interaction in up to 5 segments. This version is running within the Narval emulator. The next implementation will handle multiple interactions in a single segment.

Detector Characterization:

Ongoing on several Labs. of the collaboration with Scanning tables

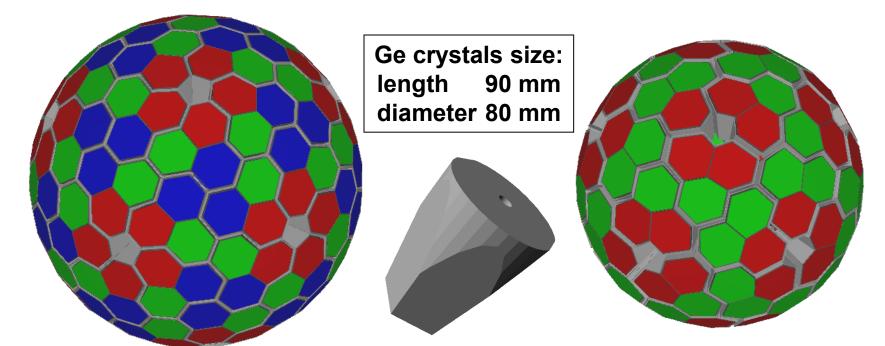
Data Analysis, Pulse Shape Analysis & Tracking


- •AGATA Data Format , Including AGATA detector traces
- •NARVAL emulator to reprocess data with Event Builder and PSA
- •GAMMAware to create root trees for analysis

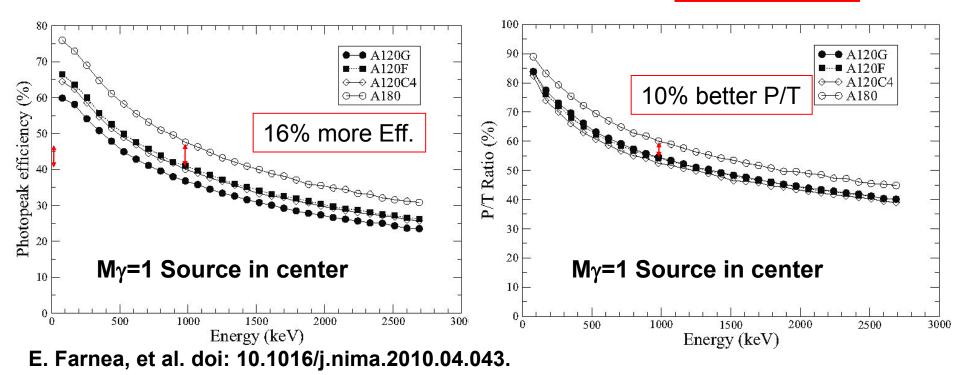
The 3rd EGAN School on AGATA Data Analysis

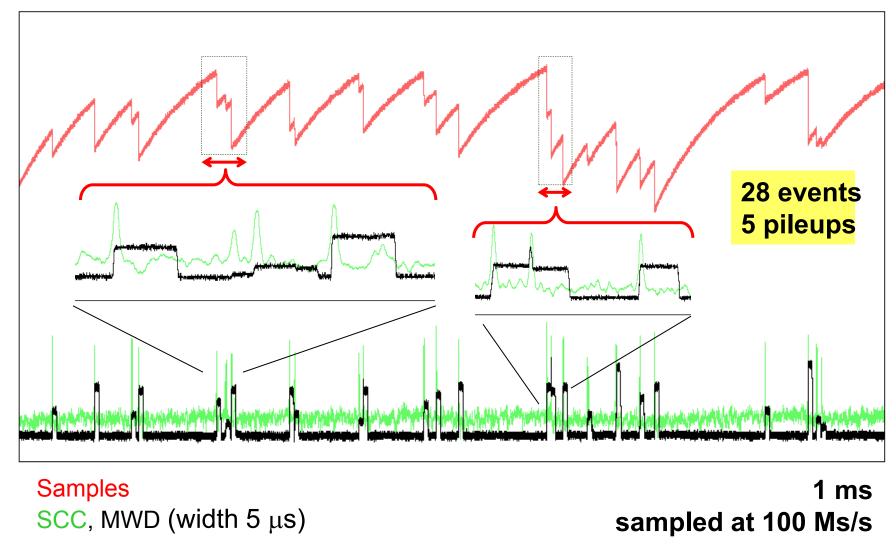
A third Data analysis school hosted in LNL October 2014. The focus will again be on good practice in data analysis Two previous school talks are on web site as requested (PSA, tracking and GRID).

Liverpool: <u>http://ns.ph.liv.ac.uk/EGAN/programme-liv-school.html</u> GSI: <u>http://ns.ph.liv.ac.uk/EGAN/programme.html</u>


IPN-Lyon, CSNSM-Orsay, INFN-Padova, IRFU-Saclay, TU-Munich, Uni. Liverpool, IPN-Orsay, GSI-Darmstadt, IFIC-Valencia

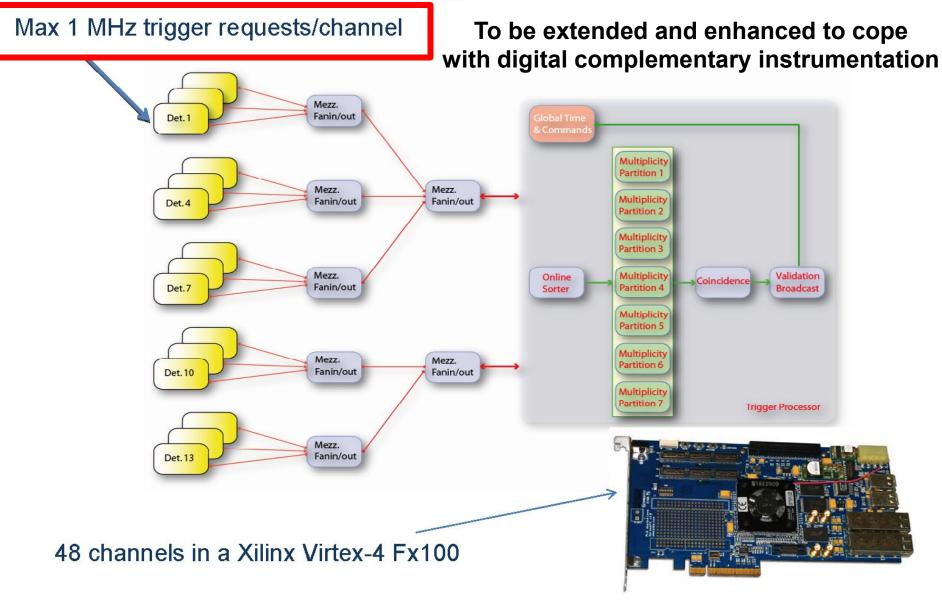
AGATA as an ECOS Detector array


Two configurations for tracking arrays

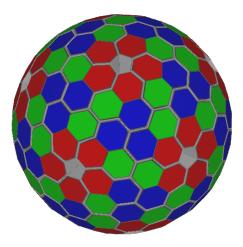

180 hexagona 60 triple-clust Inner radius (Amount of gen Solid angle co Singles rate	ers Ge) rmanium overage	3 shapes all equal 23.5 cm 360 kg 80 % ~50 kHz	120 hexagonal crystals 30 Quad-clusters Inner radius (Ge) Amount of germanium Solid angle coverage Singles rate	2 shapes all equal 18.5 cm 230 kg 78 % ~50 kHz
6480 segment			4320 segments	
	43% (Μ _γ =1)		Efficiency: 38% (M_{γ} =1)	21% (Μ _γ =30)
Peak/Total:	58% (M _γ =1)	50% (Μ _γ =30)	Peak/Total: 55% (Μ_γ=1)	47% (Μ _γ =30)

Comparison of the 2 configurations

	A120G	A120F	A120C4	A180
Number of crystals	120	120	120	180
Number of crystal shapes	2	6	2	3
Number of cluster types	2	2	1	1
Covered solid angle $(\%)$	71	78	78	82
Volume of germanium (cm ³)	43590	42225	43160	67978
Final mass of germanium (kg)	232	225	230	362
Initial mass of germanium (kg)	289	289	289	434
Fractional loss of germanium (%)	19.7	22.1	20.4	16.5
Centre-to-detector face distance (cm)	19.7	18.0	18.5	23.5



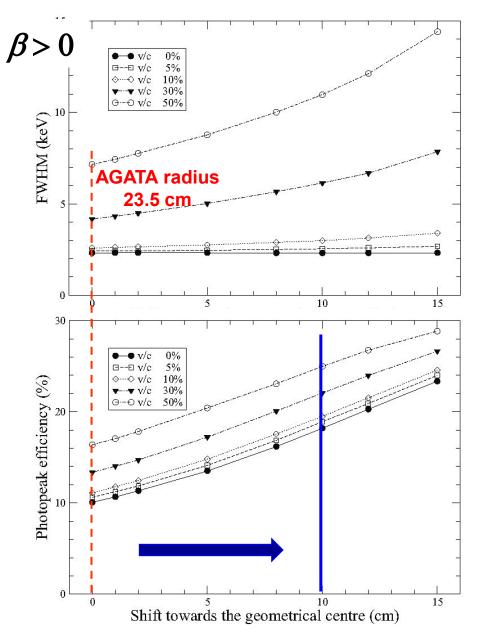
The Central Contact at 40 kHz

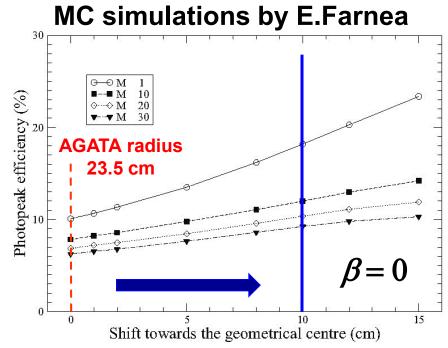

& Fast-Reset Charge pre-amplifier to avoid saturation deadtime

Global Trigger Processor

M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL

Nevertheless...


Peak efficiency of the array is about 40% at 1.3 MeV with a Peak/Total = 58%. This gives a Total efficiency of about 70% at 1.3 MeV


The efficiency of each single capsule in the standard configuration is for peak ~0.23% and total ~0.39%. The counting rate is limited to 50 to 70 kHz maximum due to pile-up losses.

For a 1mg/cm² target thickness, 1barn total cross section and average $M\gamma \sim 10 \rightarrow M_{\gamma}$ maximum beam intensity ~ 100pnA

The AGATA 1π performance figures

In addition, moving AGATA, as we do nowadays to gain efficiency, unbalance the capsule efficiency by a factor of 3 or more. Such tricks should not be done in ECOS facilities

The AGATA Collaboration

>40 Institutions

- Bulgaria: Univ. Sofia
- Denmark: NBI Copenhagen
- Finland: Univ. Jyväskylä
- France: GANIL Caen, IPN Lyon, CSNSM Orsay, IPN Orsay, CEA-DSM-DAPNIA Saclay, IPHC Strasbourg, LPSC Grenoble
- Germany: GSI Darmstadt, TU Darmstadt, Univ. zu Köln, TU München
- Hungary: ATOMKI Debrecen
- Italy: INFN-LNL, INFN and Univ. Padova, Milano, Firenze, Genova, Napoli
- Poland: NINP and IFJ Krakow, SINS Swierk, HIL & IEP Warsaw
- Romania: NIPNE & PU Bucharest
- Spain: IFIC, ETSE-UVEG Valencia, IEM-CSIC, UAM Madrid, USAL Salamanca
- Sweden: Univ. Göteborg, Lund Univ., KTH Stockholm, Uppsala Univ.
- Turkey: Univ. Ankara, Univ. Istanbul, Technical Univ. Istanbul
- UK: Univ. Brighton, CLRC Daresbury, Univ. Edinburgh, Univ. Liverpool, Univ. Manchester, Univ. West of Scotland, Univ. Surrey, Univ. York

Outlook

- Last part of the AGATA campaign at GSI performed from February to April 2014.
- Upgrade of several subsystems ongoing to reach >35 capsules in the setup during the GANIL campaign.
- Installation of AGATA at GANIL and commissioning ongoing.
- Campaign AGATA + EXOGAM2 + VAMOS + PARIS in 2015
- Campaign with other detectors (PARIS, NEDA, DIAMANT, MUST2 etc...) after 2015.
- GANIL campaign extended till 2018.

Acknowledgement to AMB, AGATA Teams and Local LNL, GSI and GANIL – AGATA Collaborators