

Prompt gamma-ray spectroscopy of neutron-rich nuclei

Bogdan Fornal

Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland

Collaboration with: ANL Argonne (USA), INFN LNL Legnaro, Univ. Padova (Italy), ANU Canberra (Australia), Univ. Surrey (UK), Univ. of Milan, IPN Orsay

> ECOS-EURISOL Joint Town Meeting October 28-31, 2014 – IPN Orsay, France,

COMPLEX NUCLEON TRANSFER REACTIONS OF HEAVY IONS*

Richard Kaufmann[†] and Richard Wolfgang Department of Chemistry, Yale University, New Haven, Connecticut (Received August 12, 1959)

¹⁶O (160 MeV) + ²⁷AI

In the 1970's, extensive experimental studies of the deep-inelastic reaction mechanism were carried out and theoretical concepts were developed.

Wilczynski Plot

J. Wilczynski, Phys. Lett. B 47, (1973)

V.V. Volkov,

Deep Inelastic Transfer Reactions – the New Type of Reactions Between Complex Nuclei, Physics Reports 44, 93 (**1978**)

L.G. Moretto and R.P. Schmitt,

Deep inelastic reactions: a probe of the collective properties of nuclear matter, Rep. Prog. Phys. Vol. 44 (1981)

A. Gobbi,

Different regimes of dissipative collisions in Lecture Notes in Physics, Volume 168, **1982**, pp. 159-174.

W.U.Schroeder and J.R.Huizenga,

Dumped Nuclear Reactions in Treatise on Heavy-Ion Science, Ed. D.A.Bromley. N.Y.; London. **1985**, pp 113-726.

To be able to resolve gamma rays from high-spin states in deep-inelastic reaction products one had to wait until the advent of the efficient germanium gamma-ray arrays.

Gamma-ray arrays based on Compton supressed Ge detectors

Starting from the 80's:

TESSA (Daresbury), OSIRIS (Berlin), **ARGONNE-ND ARRAY** (Argonne) NORDBALL (Copenhagen), JUROSPHERE (Jyvaskyla), EUROGAM (Strasbourg), CLARION (Oak Ridge) GASP (Legnaro-Padova) EUROBALL GAMMASPHERE

EUROBALL Legnaro, Strasbourg Argonne, Berkeley

Measuring gamma rays from deep-inelastic reaction products by using the thick-target technique

Detailed product yield distribution from gamma-gamma coincidence data measured with the thick-target technique for the system: ⁶⁴Ni + ²⁰⁸Pb at 350 MeV

W. Krolas et al., Nucl. Phys. A724, (2003)

New developments in the gamma-ray spectroscopy of deep-inelastic reaction products: magnetic spectrometers coupled to germanium arrays

Large-acceptance spectrometer VAMOS coupled to EXOGAM Ge array at GANIL, Caen (France)

 H. Savajols, Nucl. Instr. and Meth. B 204 (2003) 146

The map of product yields for the reaction ⁸²Se (505 MeV) + ²³⁸U

investigated with CLARA+PRISMA at LNL Legnaro

We have the method that enables the studies of high-spin structures in neutron-rich nuclei – it relies on using deep-inelastic processes and two detection techniques:

- a) thick-target technique with large germanium arrays or
- b) thin target technique with magnetic spectrometers coupled to germanium arrays.

Conclusion: A sub-shell gap develops at N=32 in neutron-rich nuclei: ⁵²Ca may be considered doubly magic.

Does there exist a sizable energy gap at N = 40 in neutron-rich nuclei?

GASP (thick target)

R. Broda et al., PRL 74, 868 (1995),

GAMMASPHERE (thick target)

I. Stefanescu et al., PRC C 79, 064302 (2009), C.J. Chiara et al., PRC 82, 054313 (2010), N. Hotelinket al., PRC 82, 044305 (2010). C.J. Chiara et al., PRC 84, 037304 (2011), C.J. Chiara et al., PRC 85, 024309 (2012), C.J. Chiara et al., PRC 86, 041304 (2012), S. Zhu et al., PRC 85, 034336 (2012)., C.J. Chiara et al., PRC C 86, 041304 (2012),

CLARA(AGATA) + PRISMA (thin taget)

S. Lunardi et al., PRC 76, 034303 (2007) J.J. Valiente-Dobon et al., PRC 78, (2008) F. Recchia et al., PRC 85, 064305 (2012) M. Doncel et al., APP B44, 505 (2013)

EXOGAM+VAMOS (thin taget) J.Ljungvall et al., PRC 81, 061301 (2010)

A. Dijon et al., PRC 83, 064321 (2011) I. Celikovic et al., APP B44, 375 (2013)

Isomer-scope – RIKEN (thin taget) T.Ishi et al., NIM A 395 (1997) Conclusion: The sub-shell closure at N=40 occurs in Ni nuclei, making the ⁶⁸Ni nucleus "almost" doubly magic.

This closure, however, is rather weak and restricted to the close proximity of ⁶⁸Ni.

Investigations in the region of doubly-magic ²⁰⁸Pb by employing deep-inelastic reactions and the $\gamma - \gamma - \gamma$ coincidence thick-target technique

Yrast structure of ²⁰⁶Bi studied by using the ⁷⁶Ge+²⁰⁸Pb reaction and gammacoincidence thick target technique (GAMMASPHERE at ANL).

207Rn	208Rn	209Rn	210Rn	211Rn	212Rn	213Rn	214Rn	215Rn	216Rn	217Rn	218Rn	219Rn
206At	207 A t	208At	209At	210At	211 A t	212At	213At	214At	215At	216At	217 A t	218At
205Po	206Po	207Po	208Po	209Po	210Po	211Po	212Po	213Po	214Po	215Po	216Po	217Po
204Bi	205 2	⁰⁶ B	781	208Bi	209Bi	210Bi	211Bi	212Bi	213Bi	214Bi	215Bi	216Bi
203Pb	204Pb		206Pb	2077	⁰⁸ PI	равр	210Pb	211Pb	212Pb	213Pb	214Pb	215Pb
202 TI	20371	204TI	205TI	2067.		208TI	209TI	210TI	211 T I	212TI	213Tl	214TI
201Hg	202Hg	203Hg	204Hg	205Hg	206Hg	207Hg	208Hg	209Hg	210Hg	211Hg	212Hg	213Hg
200 A u	201Au	202 A u	203 A u	204Au	205Au	206Au	207 A u	208Au	209 A u	210Au		
199Pt	200Pt	201Pt	202Pt	203Pt	204Pt	205Pt						
198Ir	199Ir	200Ir	201Ir	202Ir	203Ir	204Ir						

N. Cieplicka et al., PRC 86, 054322 (2012)

B. Szpak et al., PRC 83, 064315 (2011)

G. Lane et al., to be published

J. Wrzesinski et al., Eur. Phys. J 20 (2004)

Comparison of high-spin structures around ²⁰⁸Pb with results of shell-model calculations using realistic, effective V_{low-k} interaction

03Ph

B. Szpak, R.V.F Janssens, B.F., (to be published)

Can high-intensity heavy-ion beams be of advantage for doing prompt, discrete gamma-ray spectroscopy with deep-inelastic processes?

Standalone gamma-ray array $\gamma - \gamma - \gamma$ coincidences

Limitation is given by the high counting rate limit of individual Ge detectors. With digital electronics one can run with a beam current of a few pnA. Gamma-ray array coupled to a magnetic spectrometer: γ-product coincidences

Limitation here is the spectrometr: can work with a beam current of a few tens of pnA

Products around doubly magic ⁴⁸Ca investigated with prompt gamma-ray spectroscopy by using deep-inelastic reactions

N/Z equilibration line for ⁴⁸Ca+²³⁸U

Can high-intensity heavy-ion beams make available even more exotic n-r species for the prompt, discrete gamma-ray spectroscopy with deep-inelastic reactions? In 2008, a research program aimed at prompt gamma-ray spectroscopy with S³ was introduced by Faical Azaiez under the title: "In-beam gamma spectroscopy of neutron-rich nuclei studied with EXOGAM and PARIS at the intermediate focal plane of S³"

The idea relies on studying prompt gamma rays in the products of two-step deep-inelastic ractions: secondary reaction would be induced by DI reaction products emitted around 0 degree in the first reaction.

Let's see how it might work!

The idea of Faical Azaiez on employing "two-step DI reaction"

DEEP-INELASTIC HEAVY-ION COLLISIONS Wilczynski Plot

J. Wilczynski,
 Phys. Lett. B 47,
 487 (1973)

Angular distributions ->

z							20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg
						18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na
10	16Ne					17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne
	14F 15F					16F	17F	18F	19F	20F	21F	22F	23F	24F	25F	26F	27F
8			120	130	140	150	160	170	180	190	200	210	220	230	240	250	260
		10N	11N	12N	13N	¹⁴ N	15N	16N	17N	18N	19N	20N	21N	22N	23N	24N	25N
6	8C	90	10C	110	12C	13C	14C	15C	16C	17C	18C	19C	20C	21C	22C	23C	
	7B	8B	9B	10B	118	¹² B	13B	14B	15B	16B	17B	18B	19B	20B	21B		
4	6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be						
	Z		4		6		8		10		12		14		16		N

Reaction ¹⁴N + ¹⁵⁹Tb

G.H. Balster et al., Nucl. Phys. A 468, 97 (1987)

¹²**B**

6.6 MeV/A

8 MeV/A

10 MeV/A

12 MeV/A

17 MeV/A

z						19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	
						18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	
10					16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	
				14F	15F	16F	17F	18F	19F	20F	21F	22F	23F	
8		120 130		130	140	150	160	170	180	190	200	210	220	
		10N	11N	12N	13N	¹⁴ N	15N	16N	17N	18N	19N	20N	21N	
6	8C	90	10C	11C	12C	13C	14C	15C	16C	17C	18C	19C	20C	
	7B	8B	9B	10B	11B	12B	13B	14 B	15B	16B	17B	18B	19B	
4	6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be			
	Z		4		6		8	8 10			12	14		

Reaction ¹⁴N + ¹⁵⁹Tb

G.H. Balster et al., Nucl. Phys. A 468, 97 (1987)

Nuclei available for in-beam discrete gamma-ray spectroscopy in single-step deep-inelastic reactions of ¹⁸O on ²³⁸U measured with AGATA+PARIS+VAMOS

					19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg
					18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na
				16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne
			14F	15F	16F	17F	18F	19F	20F	215	22F	23F	24F	25F	26F	27F
	120 13			140	150	160	170	¹⁸ O	190	2(0	210	220	230	240	250	260
	10N	11N	12N	13N	14N	15N	16N	17N	18N	9N	20N	21N	22N	23N	24N	25N
8C	90	10C	110	12C	13C	14C	15C	16C	17C	18C	19C	20C	21C	22C	23C	
7B	8B	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B	19B	20B	21B		
6Be	7Be	8Be	9Be	10Be	11Be	12Be	13Be	14Be	L5Be	16Be						

Nuclei available for in-beam discrete gamma-ray spectroscopy in two-step deep-inelastic reactions induced by ¹⁸O beam on ²³⁸U targets measured with S³+EXOGAM+PARIS

Letters of Intent for S³

Exploring exotic excited nuclei decay modes with correlation measurement (with two-step multinucleon transfer reactions induced by a ³⁶S beam)

P. Marini, I. Stefan, F. Azaiez

γ-spectroscopy of neutron-rich C, N, O and F nuclei around A=20 produced in two-step multi-nucleon transfer reactions with S³

B. Fornal, S. Leoni, I. Stefan, A. Maj for the PARIS, EXOGAM and S3 Collaborations

Conclusions and Outlook

- Discrete in-beam prompt gamma-ray spectroscopy with deep-inelastic reactions turned out to be efficient in elucidating high-spin structures in neutron-rich nuclei.
- Discrete in-beam prompt gamma-ray spectroscopy of highspin structures in products of deep-inelastic reactions might benefit from high intensity beams by applying the two-step reaction technique.

Collaborators

R. Broda, M. Ciemała, N. Cieplicka, W. Krolas, K.H. Maier, A. Maj, T. Pawlat, B. Szpak, J. Wrzesinski, B. F.

R.V.F. Janssens, S. Zhu, M.P. Carpenter, D. Seweryniak et al.

D. Bazzacco, L. Corradi, G. de Angelis, E. Farnea,
A. Gadea, S. Lenzi, S.Lunardi, N. Marginean,
R. Menegazzo, G. Montagnoli, F. Recchia, C. Rossi-Alvarez, A. Stefanini, S. Szilner,, J. J. Valiente-Dobon, C. Ur et al.

G. Dracoulis, G. Lane et al.

Z. Podolyak, E. Wilson, P.H. Regan, P. Walker et al.,

S. Leoni et al.,

F. Azaiez, I. Stefan et al.,

IFJ PAN Krakow, Poland

ANL Argonne, USA

GASP and PRISMA-CLARA group, Legnaro-Padova

ANU Canberra, Australia

University of Surrey, UK Univ. of Milano and Sez. INFN, Italy IPN Orsay, France

A quote from Maria Sklodowska-Curie:

A scientist in his laboratory is also a child confronting natural phenomena that impress him as though they were fairy tales.

Maria Skłodowska-Curie 1867-1934 Nobel Prizes: 1903 – physics 1911 – chemistry